JMIR Publications

JMIR Human Factors

Making health care interventions and technologies usable, safe, and effective


Journal Description

JMIR Human Factors (JHF) is a PubMed-indexed, peer-reviewed sister journal of JMIR, a leading open access eHealth journal (Impact Factor 2015: 4.532). 
JMIR Human Factors is a multidisciplinary journal with contributions from medical researchers, engineers, and social scientists.
JMIR Human Factors focuses on understanding how the behaviour and thinking of humans can influence and shape the design of health care interventions and technologies, and how the design can be evaluated and improved to make health care interventions and technologies usable, safe, and effective. JHF aspires to lead health care towards a culture of testing and safety by promoting and publishing reports rigorously evaluating the usability and human factors aspects in health care, as well as encouraging the development and debate on new methods in this emerging field. 
All articles are professionally copyedited and typeset, ready for indexing in PubMed/PubMed Central. Possible contributions include usability studies and heuristic evaluations, studies concerning ergonomics and error prevention, design studies for medical devices and healthcare systems/workflows, enhancing teamwork through Human Factors based teamwork training, measuring non-technical skills in staff like leadership, communication, situational awareness and teamwork, and healthcare policies and procedures to reduce errors and increase safety. Reviews, viewpoint papers and tutorials are as welcome as original research.

Editorial Board members are currently being recruited, please contact us if you are interested ( at


Recent Articles:

  • Patient and critical care clinicians. Source: Wikicommons; Copyright: Calleamanecer; URL:; License: Creative Commons Attribution + ShareAlike (CC-BY-SA).

    Iterative User Interface Design for Automated Sequential Organ Failure Assessment Score Calculator in Sepsis Detection


    Background: The new sepsis definition has increased the need for frequent sequential organ failure assessment (SOFA) score recalculation and the clerical burden of information retrieval makes this score ideal for automated calculation. Objective: The aim of this study was to (1) estimate the clerical workload of manual SOFA score calculation through a time-motion analysis and (2) describe a user-centered design process for an electronic medical record (EMR) integrated, automated SOFA score calculator with subsequent usability evaluation study. Methods: First, we performed a time-motion analysis by recording time-to-task-completion for the manual calculation of 35 baseline and 35 current SOFA scores by 14 internal medicine residents over a 2-month period. Next, we used an agile development process to create a user interface for a previously developed automated SOFA score calculator. The final user interface usability was evaluated by clinician end users with the Computer Systems Usability Questionnaire. Results: The overall mean (standard deviation, SD) time-to-complete manual SOFA score calculation time was 61.6 s (33). Among the 24% (12/50) usability survey respondents, our user-centered user interface design process resulted in >75% favorability of survey items in the domains of system usability, information quality, and interface quality. Conclusions: Early stakeholder engagement in our agile design process resulted in a user interface for an automated SOFA score calculator that reduced clinician workload and met clinicians’ needs at the point of care. Emerging interoperable platforms may facilitate dissemination of similarly useful clinical score calculators and decision support algorithms as “apps.” A user-centered design process and usability evaluation should be considered during creation of these tools.

  • Elderly couple with grandchildren. Source: Pixabay; Copyright: sylviebliss; URL:; License: Public Domain (CC0).

    Tablet-Based Well-Being Check for the Elderly: Development and Evaluation of Usability and Acceptability


    Background: Many elderly people prefer to live at home independently. One of the major concerns raised by the family members is the safety and well-being of their elderly family members when living independently in a home environment. To address this issue, assistive technology solutions have been available in the market. Despite their availability and proliferation, these types of solutions are not popular with the elderly due to their intrusive nature, privacy-related issues, social stigma, and fear of losing human interaction. This study shares the experience in the development of a digital photo frame system that helps family members to check the well-being of the elderly, exploiting their desire to remain socially connected. Objectives: The aim of this study was to iteratively design, implement, and assess the usability, user friendliness, and acceptability of a tablet-based system to check the well-being of the elderly. Methods: Our study methodology comprises three separate stages: initial system development, contextual assessment, and comparative case study evaluation. Results: In the first stage, requirements were elicited from the elderly to design a well-being check prototype. In the second stage, areas for improvements (eg, privacy features) were identified. Also, additional features (such as medication prompts or food reminders) were suggested to help aged and health care service providers with effective but subtle monitoring of the elderly. These would lower their operating cost by reducing visits by care providers to the homes of the elderly. In the third stage, the results highlighted the difference (between users in India and Australia) in the levels of familiarity of the elderly with this technology. Some elderly participants at the Kalyani Institute for Study, Planning and Action for Rural Change, India latched onto this technology quickly while a few refused to use the system. However, in all cases, the support of family members was crucial for their willingness to use the technology. Conclusions: This project has three major outcomes. First, a picture frame prototype was tested with the elderly to leverage the benefits of social communication. Second, the project helped us test and implement the “Silvercare” model for supporting the elderly through young retired people residing in the area. Finally, the project helped formalize the agile three-stage design methodology to develop information technology solutions for the elderly. Also, the project contributed to an ongoing European Union Project called Victoryahome, which involves more than 50 sites across 5 countries (Norway, Sweden, Netherlands, Portugal, and Australia) to assess the use of telepresence robots, wearable fall detectors, and medication dispensers for the elderly living independently.

  • Source: Shutterstock; Copyright: Spectral-Design; URL:; License: Licensed by the authors.

    A Web-Based Graphical Food Frequency Assessment System: Design, Development and Usability Metrics


    Background: Food frequency questionnaires (FFQs) are well established in the nutrition field, but there remain important questions around how to develop online tools in a way that can facilitate wider uptake. Also, FFQ user acceptance and evaluation have not been investigated extensively. Objective: This paper presents a Web-based graphical food frequency assessment system that addresses challenges of reproducibility, scalability, mobile friendliness, security, and usability and also presents the utilization metrics and user feedback from a deployment study. Methods: The application design employs a single-page application Web architecture with back-end services (database, authentication, and authorization) provided by Google Firebase’s free plan. Its design and responsiveness take advantage of the Bootstrap framework. The FFQ was deployed in Kuwait as part of the EatWellQ8 study during 2016. The EatWellQ8 FFQ contains 146 food items (including drinks). Participants were recruited in Kuwait without financial incentive. Completion time was based on browser timestamps and usability was measured using the System Usability Scale (SUS), scoring between 0 and 100. Products with a SUS higher than 70 are considered to be good. Results: A total of 235 participants created accounts in the system, and 163 completed the FFQ. Of those 163 participants, 142 reported their gender (93 female, 49 male) and 144 reported their date of birth (mean age of 35 years, range from 18-65 years). The mean completion time for all FFQs (n=163), excluding periods of interruption, was 14.2 minutes (95% CI 13.3-15.1 minutes). Female participants (n=93) completed in 14.1 minutes (95% CI 12.9-15.3 minutes) and male participants (n=49) completed in 14.3 minutes (95% CI 12.6-15.9 minutes). Participants using laptops or desktops (n=69) completed the FFQ in an average of 13.9 minutes (95% CI 12.6-15.1 minutes) and participants using smartphones or tablets (n=91) completed in an average of 14.5 minutes (95% CI 13.2-15.8 minutes). The median SUS score (n=141) was 75.0 (interquartile range [IQR] 12.5), and 84% of the participants who completed the SUS classified the system either “good” (n=50) or “excellent” (n=69). Considering only participants using smartphones or tablets (n=80), the median score was 72.5 (IQR 12.5), slightly below the SUS median for desktops and laptops (n=58), which was 75.0 (IQR 12.5). No significant differences were found between genders or age groups (below and above the median) for the SUS or completion time. Conclusions: Taking into account all the requirements, the deployment used professional cloud computing at no cost, and the resulting system had good user acceptance. The results for smartphones/tablets were comparable with desktops/laptops. This work has potential to promote wider uptake of online tools that can assess dietary intake at scale.

  • A clinician using telemedicine. Source: Created by the Authors; Copyright: Shraddhaa Narasimha; URL:; License: Creative Commons Attribution (CC-BY).

    Toward a More Usable Home-Based Video Telemedicine System: A Heuristic Evaluation of the Clinician User Interfaces of Home-Based Video Telemedicine Systems


    Background: Telemedicine is the use of technology to provide and support health care when distance separates the clinical service and the patient. Home-based telemedicine systems involve the use of such technology for medical support and care connecting the patient from the comfort of their homes with the clinician. In order for such a system to be used extensively, it is necessary to understand not only the issues faced by the patients in using them but also the clinician. Objectives: The aim of this study was to conduct a heuristic evaluation of 4 telemedicine software platforms—, Polycom, Vidyo, and VSee—to assess possible problems and limitations that could affect the usability of the system from the clinician’s perspective. Methods: It was found that 5 experts individually evaluated all four systems using Nielsen’s list of heuristics, classifying the issues based on a severity rating scale. Results: A total of 46 unique problems were identified by the experts. The heuristics most frequently violated were visibility of system status and Error prevention amounting to 24% (11/46 issues) each. Esthetic and minimalist design was second contributing to 13% (6/46 issues) of the total errors. Conclusions: Heuristic evaluation coupled with a severity rating scale was found to be an effective method for identifying problems with the systems. Prioritization of these problems based on the rating provides a good starting point for resolving the issues affecting these platforms. There is a need for better transparency and a more streamlined approach for how physicians use telemedicine systems. Visibility of the system status and speaking the users’ language are keys for achieving this.

  • Nurse on phone. Source: iStock by Getty Images; Copyright: monkeybusinessimages; URL:; License: Licensed by the authors.

    Personal Communication Device Use by Nurses Providing In-Patient Care: Survey of Prevalence, Patterns, and Distraction Potential


    Background: Coincident with the proliferation of employer-provided mobile communication devices, personal communication devices, including basic and enhanced mobile phones (smartphones) and tablet computers that are owned by the user, have become ubiquitous among registered nurses working in hospitals. While there are numerous benefits of personal communication device use by nurses at work, little is known about the impact of these devices on in-patient care. Objective: Our aim was to examine how hospital-registered nurses use their personal communication devices while doing both work-related and non‒work-related activities and to assess the impact of these devices on in-patient care. Methods: A previously validated survey was emailed to 14,797 members of two national nursing organizations. Participants were asked about personal communication device use and their opinions about the impact of these devices on their own and their colleagues’ work. Results: Of the 1268 respondents (8.57% response rate), only 5.65% (70/1237) never used their personal communication device at work (excluding lunch and breaks). Respondents self-reported using their personal communication devices at work for work-related activities including checking or sending text messages or emails to health care team members (29.02%, 363/1251), as a calculator (25.34%, 316/1247), and to access work-related medical information (20.13%, 251/1247). Fewer nurses reported using their devices for non‒work-related activities including checking or sending text messages or emails to friends and family (18.75%, 235/1253), shopping (5.14%, 64/1244), or playing games (2.73%, 34/1249). A minority of respondents believe that their personal device use at work had a positive effect on their work including reducing stress (29.88%, 369/1235), benefiting patient care (28.74%, 357/1242), improving coordination of patient care among the health care team (25.34%, 315/1243), or increasing unit teamwork (17.70%, 220/1243). A majority (69.06%, 848/1228) of respondents believe that on average personal communication devices have a more negative than positive impact on patient care and 39.07% (481/1231) reported that personal communication devices were always or often a distraction while working. Respondents acknowledged their own device use negatively affected their work performance (7.56%, 94/1243), or caused them to miss important clinical information (3.83%, 47/1225) or make a medical error (0.90%, 11/1218). Respondents reported witnessing another nurse’s use of devices negatively affect their work performance (69.41%, 860/1239), or cause them to miss important clinical information (30.61%, 378/1235) or make a medical error (12.51%, 155/1239). Younger respondents reported greater device use while at work than older respondents and generally had more positive opinions about the impact of personal communication devices on their work. Conclusions: The majority of registered nurses believe that the use of personal communication devices on hospital units raises significant safety issues. The high rate of respondents who saw colleagues distracted by their devices compared to the rate who acknowledged their own distraction may be an indication that nurses are unaware of their own attention deficits while using their devices. There were clear generational differences in personal communication device use at work and opinions about the impact of these devices on patient care. Professional codes of conduct for personal communication device use by hospital nurses need to be developed that maximize the benefits of personal communication device use, while reducing the potential for distraction and adverse outcomes.

  • Man using computer and smart phone. Copyright: Image created by the authors using; URL: Image 1 source:, Image 2 source:; License: Licensed under Creative Commons Attribution 2.0..

    Design and Usability of a Heart Failure mHealth System: A Pilot Study


    Background: Despite the advances in mobile health (mHealth) systems, little is known about patients’ and providers’ experiences using a new mHealth system design. Objective: This study aimed to understand challenges and provide design considerations for a personalized mHealth system that could effectively support heart failure (HF) patients after they transition into the home environment. Methods: Following exploratory interviews with nurses and preventive care physicians, an mHealth system was developed. Patients were asked to measure their weight, blood pressure, and blood glucose (if they had diabetes). They were also instructed to enter symptoms, view notifications, and read messages on a mobile app that we developed. A Bluetooth-enabled weight scale, blood pressure monitor, glucometer, and mobile phone was provided after an introductory orientation and training session. HF nurses used a dashboard to view daily measurements for each patient and received text and email alerts when risk was indicated. Observations of usage, cases of deterioration, readmissions, and metrics related to system usability and quality of life outcomes were used to determine overall effectiveness of the system, whereas focus group sessions with patients were conducted to elicit participants’ feedback on the system’s design. Results: A total of 8 patients with HF participated over a 6-month period. Overall, the mean users’ satisfaction with the system ranked 73%, which was above average. Quality of life improvement was 3.6. Patients and nurses used the system on a regular basis and were able to successfully identify and manage 8 health deteriorations, of which 5 were completely managed remotely. Focus groups revealed that, on one hand, the system was beneficial and helped patients with: recording and tracking readings; receiving encouragement and reassurance from nurses; spotting and solving problems; learning from past experiences; and communication. On the other hand, findings also highlighted design issues and recommendations for future systems such as the need to communicate via other media, personalize symptom questions and messages, integrate other health tracking technologies, and provide additional methods to analyze and visualize their data. Conclusions: Understanding users’ experiences provides important design considerations that could complement existing design recommendations from the literature, and, when combined with physician and nurse requirements, have the potential to yield a feasible telehealth system that is effective in supporting HF self-care. Future studies will include these guidelines and use a larger sample size to validate the outcomes.

  • Image source: From Figure 11: Older adult users carrying out tasks using the user manual as a guide during the user testing.

    A Human-Centered Design Methodology to Enhance the Usability, Human Factors, and User Experience of Connected Health Systems: A Three-Phase Methodology


    Background: Design processes such as human-centered design, which involve the end user throughout the product development and testing process, can be crucial in ensuring that the product meets the needs and capabilities of the user, particularly in terms of safety and user experience. The structured and iterative nature of human-centered design can often present a challenge when design teams are faced with the necessary, rapid, product development life cycles associated with the competitive connected health industry. Objective: We wanted to derive a structured methodology that followed the principles of human-centered design that would allow designers and developers to ensure that the needs of the user are taken into account throughout the design process, while maintaining a rapid pace of development. In this paper, we present the methodology and its rationale before outlining how it was applied to assess and enhance the usability, human factors, and user experience of a connected health system known as the Wireless Insole for Independent and Safe Elderly Living (WIISEL) system, a system designed to continuously assess fall risk by measuring gait and balance parameters associated with fall risk. Methods: We derived a three-phase methodology. In Phase 1 we emphasized the construction of a use case document. This document can be used to detail the context of use of the system by utilizing storyboarding, paper prototypes, and mock-ups in conjunction with user interviews to gather insightful user feedback on different proposed concepts. In Phase 2 we emphasized the use of expert usability inspections such as heuristic evaluations and cognitive walkthroughs with small multidisciplinary groups to review the prototypes born out of the Phase 1 feedback. Finally, in Phase 3 we emphasized classical user testing with target end users, using various metrics to measure the user experience and improve the final prototypes. Results: We report a successful implementation of the methodology for the design and development of a system for detecting and predicting falls in older adults. We describe in detail what testing and evaluation activities we carried out to effectively test the system and overcome usability and human factors problems. Conclusions: We feel this methodology can be applied to a wide variety of connected health devices and systems. We consider this a methodology that can be scaled to different-sized projects accordingly.

  • App development. Image Source: Firmbee via Pixabay. Open source.

    Mobile Phone Apps for Smoking Cessation: Quality and Usability Among Smokers With Psychosis


    Background: Smoking is one of the top preventable causes of mortality in people with psychotic disorders such as schizophrenia. Cessation treatment improves abstinence outcomes, but access is a barrier. Mobile phone apps are one way to increase access to cessation treatment; however, whether they are usable by people with psychotic disorders, who often have special learning needs, is not known. Objective: Researchers reviewed 100 randomly selected apps for smoking cessation to rate them based on US guidelines for nicotine addiction treatment and to categorize them based on app functions. We aimed to test the usability and usefulness of the top-rated apps in 21 smokers with psychotic disorders. Methods: We identified 766 smoking cessation apps and randomly selected 100 for review. Two independent reviewers rated each app with the Adherence Index to US Clinical Practice Guideline for Treating Tobacco Use and Dependence. Then, smokers with psychotic disorders evaluated the top 9 apps within a usability testing protocol. We analyzed quantitative results using descriptive statistics and t tests. Qualitative data were open-coded and analyzed for themes. Results: Regarding adherence to practice guidelines, most of the randomly sampled smoking cessation apps scored poorly—66% rated lower than 10 out of 100 on the Adherence Index (Mean 11.47, SD 11.8). Regarding usability, three common usability problems emerged: text-dense content, abstract symbols on the homepage, and subtle directions to edit features. Conclusions: In order for apps to be effective and usable for this population, developers should utilize a balance of text and simple design that facilitate ease of navigation and content comprehension that will help people learn quit smoking skills.

  • Acute coronary syndrome patient booklet mortality statistics. Image sourced and copyright owned by authors.

    Negotiating Tensions Between Theory and Design in the Development of Mailings for People Recovering From Acute Coronary Syndrome


    Background: Taking all recommended secondary prevention cardiac medications and fully participating in a formal cardiac rehabilitation program significantly reduces mortality and morbidity in the year following a heart attack. However, many people who have had a heart attack stop taking some or all of their recommended medications prematurely and many do not complete a formal cardiac rehabilitation program. Objective: The objective of our study was to develop a user-centered, theory-based, scalable intervention of printed educational materials to encourage and support people who have had a heart attack to use recommended secondary prevention cardiac treatments. Methods: Prior to the design process, we conducted theory-based interviews and surveys with patients who had had a heart attack to identify key determinants of secondary prevention behaviors. Our interdisciplinary research team then partnered with a patient advisor and design firm to undertake an iterative, theory-informed, user-centered design process to operationalize techniques to address these determinants. User-centered design requires considering users’ needs, goals, strengths, limitations, context, and intuitive processes; designing prototypes adapted to users accordingly; observing how potential users respond to the prototype; and using those data to refine the design. To accomplish these tasks, we conducted user research to develop personas (archetypes of potential users), developed a preliminary prototype using behavior change theory to map behavior change techniques to identified determinants of medication adherence, and conducted 2 design cycles, testing materials via think-aloud and semistructured interviews with a total of 11 users (10 patients who had experienced a heart attack and 1 caregiver). We recruited participants at a single cardiac clinic using purposive sampling informed by our personas. We recorded sessions with users and extracted key themes from transcripts. We held interdisciplinary team discussions to interpret findings in the context of relevant theory-based evidence and iteratively adapted the intervention accordingly. Results: Through our iterative development and testing, we identified 3 key tensions: (1) evidence from theory-based studies versus users’ feelings, (2) informative versus persuasive communication, and (3) logistical constraints for the intervention versus users’ desires or preferences. We addressed these by (1) identifying root causes for users’ feelings and addressing those to better incorporate theory- and evidence-based features, (2) accepting that our intervention was ethically justified in being persuasive, and (3) making changes to the intervention where possible, such as attempting to match imagery in the materials to patients’ self-images. Conclusions: Theory-informed interventions must be operationalized in ways that fit with user needs. Tensions between users’ desires or preferences and health care system goals and constraints must be identified and addressed to the greatest extent possible. A cluster randomized controlled trial of the final intervention is currently underway.

  • App Prototype Home Screen. Image sourced and copyright owned by authors.

    A Self-Regulation Theory–Based Asthma Management Mobile App for Adolescents: A Usability Assessment


    Background: Self-regulation theory suggests people learn to influence their own behavior through self-monitoring, goal-setting, feedback, self-reward, and self-instruction, all of which smartphones are now capable of facilitating. Several mobile apps exist to manage asthma; however, little evidence exists about whether these apps employ user-centered design processes that adhere to government usability guidelines for mobile apps. Objective: Building upon a previous study that documented adolescent preferences for an asthma self-management app, we employed a user-centered approach to assess the usability of a high-fidelity wireframe for an asthma self-management app intended for use by adolescents with persistent asthma. Methods: Individual interviews were conducted with adolescents (ages 11-18 years) with persistent asthma who owned a smartphone (N=8). Adolescents were asked to evaluate a PDF app wireframe consisting of 76 screen shots displaying app features, including log in and home screen, profile setup, settings and info, self-management features, and graphical displays for charting asthma control and medication. Preferences, comments, and suggestions for each set of screen shots were assessed using the audio-recorded interviews. Two coders reached consensus on adolescent evaluations of the following aspects of app features: (1) usability, (2) behavioral intentions to use, (3) confusing aspects, and (4) suggestions for improvement. Results: The app wireframe was generally well received, and several suggestions for improvement were recorded. Suggestions included increased customization of charts and notifications, reminders, and alerts. Participants preferred longitudinal data about asthma control and medication use to be displayed using line graphs. All participants reported that they would find an asthma management app like the one depicted in the wireframe useful for managing their asthma. Conclusions: Early stage usability tests guided by government usability guidelines ( revealed areas for improvement for an asthma self-management app for adolescents. Addressing these areas will be critical to developing an engaging and effective asthma self-management app that is capable of improving adolescent asthma outcomes.

  • Time spent on the Internet and eHealth literacy. Image source: Author: Copyright: CC0 License Public Domain.

    eHealth Literacy: Predictors in a Population With Moderate-to-High Cardiovascular Risk


    Background: Electronic health (eHealth) literacy is a growing area of research parallel to the ongoing development of eHealth interventions. There is, however, little and conflicting information regarding the factors that influence eHealth literacy, notably in chronic disease. We are similarly ill-informed about the relationship between eHealth and health literacy, 2 related yet distinct health-related literacies. Objective: The aim of our study was to investigate the demographic, socioeconomic, technology use, and health literacy predictors of eHealth literacy in a population with moderate-to-high cardiovascular risk. Methods: Demographic and socioeconomic data were collected from 453 participants of the CONNECT (Consumer Navigation of Electronic Cardiovascular Tools) study, which included age, gender, education, income, cardiovascular-related polypharmacy, private health care, main electronic device use, and time spent on the Internet. Participants also completed an eHealth Literacy Scale (eHEALS) and a Health Literacy Questionnaire (HLQ). Univariate analyses were performed to compare patient demographic and socioeconomic characteristics between the low (eHEALS<26) and high (eHEALS≥26) eHealth literacy groups. To then determine the predictors of low eHealth literacy, multiple-adjusted generalized estimating equation logistic regression model was used. This technique was also used to examine the correlation between eHealth literacy and health literacy for 4 predefined literacy themes: navigating resources, skills to use resources, usefulness for oneself, and critical evaluation. Results: The univariate analysis showed that patients with lower eHealth literacy were older (68 years vs 66 years, P=.01), had lower level of education (P=.007), and spent less time on the Internet (P<.001). However, multiple-adjusted generalized estimating equation logistic regression model demonstrated that only the time spent on the Internet (P=.01) was associated with the level of eHealth literacy. Regarding the comparison between the eHEALS items and HLQ scales, a positive linear relationship was found for the themes “usefulness for oneself” (P=.049) and “critical evaluation” (P=.01). Conclusions: This study shows the importance of evaluating patients’ familiarity with the Internet as reflected, in part, by the time spent on the Internet. It also shows the importance of specifically assessing eHealth literacy in conjunction with a health literacy assessment in order to assess patients’ navigational knowledge and skills using the Internet, specific to the use of eHealth applications.

  • Woman taking child's temperature with thermometer. Image created and copyright owned by authors.

    Considerations for an Access-Centered Design of the Fever Thermometer in Low-Resource Settings: A Literature Review


    Background: The lack of adequate information about fever in low-resource settings, its unreliable self-assessment, and poor diagnostic practices may result in delayed care and under-or-overdiagnosis of diseases such as malaria. The mismatches of existing fever thermometers in the context of use imply that the diagnostic tools and connected services need to be studied further to address the challenges of fever-related illnesses and their diagnostics. Objective: This study aims to inform a product-service system approach to design a reliable and accessible fever thermometer and connected services, as well as contribute to the identification of innovative opportunities to improve health care in low-resource settings. Methods: To determine what factors impede febrile people seeking health care to access adequate fever diagnostics, a literature search was conducted in Google Scholar and PubMed with relevant keywords. Next, these factors were combined with a patient journey model to design a new product-service system for fever diagnostics in low-resource settings. Results: In total, 37 articles were reviewed. The five As framework was used to categorize the identified barriers. The results indicate that there is a poor distribution of reliable fever diagnostic practices among remote communities. This paper speaks to the global public health and design communities. Three complementary considerations are discussed that support the idea of a more holistic approach to the design of fever diagnostics: (1) understanding of the fever diagnostics patient journey, (2) identifying user groups of the thermometers in a specific health care system, and (3) assessing different needs and interests of the different users. Conclusions: Access to basic, primary health care may be enhanced with better information and technology design made through the involvement of system users.

Citing this Article

Right click to copy or hit: ctrl+c (cmd+c on mac)

Latest Submissions Open for Peer-Review:

View All Open Peer Review Articles
  • Assessing Throughput after Implementation of an Electronic Bed Management System at a ST Subacute Rehab Unit in a Skilled Nursing Facility

    Date Submitted: May 22, 2017

    Open Peer Review Period: May 24, 2017 - Jun 7, 2017

    Background: Electronic bed board systems are typically used to manage the dynamic environment in an acute care facility. These bed management systems can help the facility maintain a consistent patien...

    Background: Electronic bed board systems are typically used to manage the dynamic environment in an acute care facility. These bed management systems can help the facility maintain a consistent patient flow to retain profits and preserve or improve the quality of care. Increased throughput can also result in higher patient satisfaction ratings, as patients are discharged quickly and more efficiently. In an acute care facility, the admission, discharge, and transfer (ADT) process requires involvement from key members of various interdisciplinary departments. Objective: The objective of this project is to simplify the ADT process at Terence Cardinal Cooke Healthcare Center (TCC) by designing a simple electronic bed management system. Methods: On October 1, 2016, an electronic bed management system prototype was introduced to the interdisciplinary team (IDT) to pilot on the short-term subacute units at TCC. The prototype was developed using Microsoft Excel 2013. Results: Comparing the admissions data from the six month pre-implementation period to the six month post-implementation period revealed that the electronic bed board contributed to a 57% increase in the average short-term subacute patient throughput. In addition, the average bed turnaround time was reduced by 56% during the post-implementation period. Conclusions: The data supports utilizing an electronic bed management system to increase throughput and improve the quality of care.