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Abstract

Background: There is an increased demand in hospitals for tools, such as dedicated mobile device apps, that enable the recording
of clinical information in an electronic format at the patient’s bedside. Although the human-machine interface design on mobile
devices strongly influences the accuracy and effectiveness of data recording, there is still a lack of evidence as to which interface
design offers the best guarantee for ease of use and quality of recording. Therefore, interfaces need to be assessed both for usability
and reliability because recording errors can seriously impact the overall level of quality of the data and affect the care provided.

Objective: In this randomized crossover trial, we formally compared 6 handheld device interfaces for both speed of data entry
and accuracy of recorded information. Three types of numerical data commonly recorded at the patient’s bedside were used to
evaluate the interfaces.

Methods: In total, 150 health care professionals from the University Hospitals of Geneva volunteered to record a series of
randomly generated data on each of the 6 interfaces provided on a smartphone. The interfaces were presented in a randomized
order as part of fully automated data entry scenarios. During the data entry process, accuracy and effectiveness were automatically
recorded by the software.

Results: Various types of errors occurred, which ranged from 0.7% for the most reliable design to 18.5% for the least reliable
one. The length of time needed for data recording ranged from 2.81 sec to 14.68 sec, depending on the interface. The numeric
keyboard interface delivered the best performance for pulse data entry with a mean time of 3.08 sec (SD 0.06) and an accuracy
of 99.3%.

Conclusions: Our study highlights the critical impact the choice of an interface can have on the quality of recorded data. Selecting
an interface should be driven less by the needs of specific end-user groups or the necessity to facilitate the developer’s task (eg,
by opting for default solutions provided by commercial platforms) than by the level of speed and accuracy an interface can provide
for recording information. An important effort must be made to properly validate mobile device interfaces intended for use in
the clinical setting. In this regard, our study identified the numeric keyboard, among the proposed designs, as the most accurate
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interface for entering specific numerical values. This is an important step toward providing clearer guidelines on which interface
to choose for the appropriate use of handheld device interfaces in the health care setting.

(JMIR Human Factors 2015;2(2):e15) doi: 10.2196/humanfactors.4093
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Introduction

Electronic data collection and recording in the health care setting
is performed increasingly at the patient’s bedside. Data (eg,
medical prescriptions, medical summary reports, or daily
recordings of body temperature, respiratory or cardiac
frequency) can easily be collected on portable computers. Such
devices have the advantage of being easy to store, manipulate,
and use in emergency departments, outpatient clinics, or other
crowded areas. Among the portable devices on offer, tablets
and smartphones are becoming increasingly popular due to their
handiness and resemblance to traditional paper-and-pencil data
collection interfaces [1-3]. They also offer the advantage of
providing apps designed especially for handheld devices, such
as drug dosage calculators, electronic pharmacopeias, textbooks,
or medical literature databases [1,4-7].

In the health care setting, many usability problems contribute
to medical errors [8], of which those related to data entry are a
major source. The quality of recorded information is of utmost
importance because the life of a patient can easily be put at risk
by the improper recording of a drug dosage or the incorrect
labeling of a physiological or biological value [9-11]. Accuracy
in the process of data recording can be significantly influenced
by the design of an interface or by factors related to the type of
data to be recorded, such as a number’s length, type, magnitude
or frequency, and even font appearance [12]. This has already
been demonstrated for specific entry devices, such as infusion
pumps [12-14], and in the context of medical prescriptions [8].
The limited size and tactile interaction paradigm of handheld
devices compared to traditional laptops has further emphasized
the risk of increased errors in data entry [3].

The influence that specific characteristics of handheld devices
can have on human-machine interactions has already been
studied [15-27]. Earlier works investigated the impact of limited
display size on users’ performances for tasks such as browsing,
information retrieval, readability, or target selection [15-19].
These studies showed that the size of a mobile screen has no
major impact on the user’s comprehension of the information
displayed. However, a correlation was found between the ease
of reading and the size of the screen. In this context, Duchnicky
and Kolers [20] found that it takes users up to 25% longer to
read a given text on a small-width display than on a regular
desktop screen width. This was confirmed by another study by
Resiel and Shneiderman [21] who reported that reading on a
22-line display compared with a 60-line display resulted in a
15% decrease in the speed of reading. The same is true for
information retrieval; studies have indicated that information
retrieval tasks are harder to perform on small screen devices
[22]. Moreover, users are more likely to perform incorrect
choices when selecting from possible links and waste more time

carrying out additional scrolling type activities [23,24]. Screen
size also influences the quality of information input. Most
studies assessing users’ performance have confirmed that data
input accuracy can be impacted by keyboard size or character
setting, but also by other factors, such as a user’s finger size
[25-27]. Generally, a familiar disposition of the display and
large keyboards improve user performance.

All these tend to demonstrate that it is crucial to take into
account screen size specificity in the design of mobile device
interfaces. Therefore, we assessed 6 tactile interfaces
representing many of the common interfaces used on tablet PC
and smartphones as interfaces built based on user requirements.

Methods

In order to identify the most suitable interface for the effective
and reliable recording of numerical data on handheld devices,
we performed a crossover randomized trial assessing 6 handheld
interfaces designed according to 6 paradigms ranging from
commercially available solutions to experimental designs. Each
participant had to record several vital numerical signs on each
interface. The interfaces were provided automatically in a
random order.

Participants
A sample most representative of health care professionals likely
to collect, record, or use clinical data as part of their daily
activity was recruited within the University Hospitals of Geneva,
Switzerland. Recruitment was carried out following approval
of the project by the “Commission cantonale d'éthique de la
recherche,” the University hospitals’human research and ethics
committee. Previously published research on similar research
questions were able to demonstrate significant differences
between data entry interfaces with 30 participants involved [13].
However, because we were able to recruit among a large number
of caregivers and had no prerequisites as to participants’
characteristics, we relied on a convenience sampling approach.
In total, 150 hospital workers selected across 5 categories of
professionals were recruited: nurses, assistant nurses, midwives,
physicians, and administrative staff. Participation was on a
voluntary basis and there was no exclusion criterion.

Instruments
To test the 6 interfaces, we used a common commercially
available smartphone, the Samsung Galaxy Note, which has a
5.3-inch screen with a resolution of 1280×800 pixels. This type
of smartphone is representative of contemporary smartphones.
It is also characterized by a high level of flexibility, which
reduces to the minimum the design constraints set by
human-machine interfaces. The 6 interfaces that were tested
were designed to represent the most complete range of options
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man-machine computer interfaces can offer (Figure 1). Four of
the interfaces were chosen among existing interface design
frameworks. The numeric keypad interface was chosen because
it is recognized as being a being very effective at reducing the
number of entry errors [13]. The stepper and wheel interfaces
were chosen because they are commonly available on 2 major
commercial smartphone operating systems, Android and iOS.
Finally, the character recognition interface was chosen because
it was among the first interfaces proposed for touchscreen
devices, such as the PalmPilot. The last two options were
developed by two distinct expert committees based on end-user

requirements for recording interfaces. The first committee
included caregivers who designed a dynamic chart (named
“column”) aimed at facilitating the identification of vital sign
trends. The second committee included computer scientists at
the hospital who developed a fast data entry system (the “circle”)
built on an interaction principle similar to the SwiftKey
keyboard. The interfaces were implemented by the research
team and installed on all devices provided to participants.
Experimental designs were previously extensively tested by
volunteers to ensure usability of the recording interfaces.

Figure 1. Description of the six data entry interfaces.

Study Procedure and Data Collection
The trial was designed to minimize interaction biases. Based
on a set of possible problems identified in a pilot phase,
standardized procedures were defined so that any problem (eg,
a system crash) would by default always be handled in a similar
way. Each session of the trial took place in a controlled
environment where participants could perform the test without
any interruption or other disturbance. Before beginning the trial,
each participant was shortly briefed on the study purpose and
overall procedure. Participants were also informed that there

was no time constraint for entering the displayed numbers. Each
participant was then provided with a smartphone. Because the
study procedure and instructions were available on each device
and the entire study process was regulated by a computer
program, there was no need for further interaction with the
research team. Although the experiment took place in a
controlled environment, participants were asked to use only one
hand to hold the device to simulate the real-life bedside
recording procedure as closely as possible (see Multimedia
Appendix 1 for the CONSORT checklist filled for this study).
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Figure 2. Data recording process.

Participants were first asked to read the instructions of the
experiment that were displayed on the smartphone. A short
questionnaire then popped up on the screen asking for details
on participants’demographics and computer literacy. Following
these steps, the actual trial phase began. Each participant was
requested to enter data on all 6 interfaces. The sequence in which
interfaces came up was automatically computed and randomly
defined for each participant. The procedure was the same for
each interface: participants were first able to practice the
procedure before entering the data to be recorded. For each
interface design, participants were asked to enter 3 types of
physiological measures (body temperature, respiratory rate,
pulse rate) that were displayed at the top of the screen. We chose
these 3 vital signs from among the most frequently collected
signs during patient follow-up that could be described using a
single numerical value. For this reason, measurements such as
blood pressure (composed of 2 values) were discarded as were

other types of data, such as dates or time, which we considered
would require other types of dedicated entry interfaces. When
entering a number, participants could correct it as many times
as they wanted before validating it. The computer program
randomly generated the type of physiological data to be recorded
and a value to be entered. During the training period, participants
had to record 2 physiological values with the interface displayed
on the screen. Users could not skip this step and had to continue
the selection process until they succeeded. This is the only time
users were allowed to request external assistance if they did not
understand how to use the interface. Once the 2 physiological
values were successfully recorded, the testing process started
and participants were asked to record 3 random values for each
possible interface-sign combination. Data for pulse, respiratory
rate, and body temperature were given a predefined range of
recordable values (Table 1).

Table 1. Range of recordable values.

Number of possible valuesDecimalRangeSign

140No30-170Pulse

50Yes36-41Body temperature

17No3-20Respiratory rate

The task was repeated until 3 values were recorded for each of
the 3 physiological signs in each of the 6 interfaces. Altogether,
this totaled 54 data entries for each participant.

Measured Variables
All variables needed for assessing the performance of each
participant were recorded automatically on the smartphone.
Among the variables that were measured were the number of
actions performed by the participant, the number of corrections
made, and the time until data entry validation. Data could be

exported in a comma separated value file. Accuracy was
measured by comparing the values participants were requested
to enter as they appeared on the top of the smartphone’s screen
with the ones actually entered by each participant. Success or
failure outcomes were then summed and reported as a proportion
of the maximum possible score for each category of data entry.
Effectiveness was assessed by measuring the time used to record
each of the values.
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Analysis
Descriptive summary statistics of continuous variables included
means (SD), or medians with ranges, depending on their
distribution. Continuous variables were compared using the
paired Student t test or the Wilcoxon signed rank test if not
normally distributed. For categorical variables, we used
frequencies and proportions. Participants’ satisfaction was
assessed using the Friedman 2-way ANOVA test. After adjusting
for age and familiarity of use of computers or smartphones,
possible associations between the data entry time for each type
of variable and the type of interface used or the sequence of
data entry were examined using multilevel linear models. The
same was done to evaluate the number of errors and corrections
associated with each interface, this time using multilevel mixed
logistic models. To obtain a normal distribution of the dependent
variable, we used the log of speed of data entry. Interfaces were
nested within the type of data entry, which were themselves
nested within the coder.

A P value <.05 was considered statistically significant. We
performed all analyses using the statistical package Stata version
12.

Results

Only 4 participants failed to complete the test due to technical
problems or professional emergency causing them to leave the
study before its completion. These incomplete records were
removed from the study analysis. Demographics for the
remaining 146 participants could be summarized as follows:
mean age of participants was 43.6 years (SD 10.2) with
two-thirds (64.4%, 94/146) younger than age 46 years. Most of
participants enrolled in the study (92.5%, 135/146) were
right-handed and nearly all (95.9%, 140/146) possessed a
personal computer, although only 61.0% (89/146) already owned
a smartphone. Most (75.3%, 110/146) were caregivers; the
remaining 24.7% (36/146) were recruited among administrative
personnel or computer scientists classified as “other
participants.” Study participant characteristics are detailed in
Table 2.

The time needed to enter values with the different interfaces
differed depending on the type of vital sign recorded (Table 3).
In most cases, it took less time to enter pulse than body
temperature values, and even less time to enter respiratory rates
(except for the wheel mode). The results provided in Table 3
show that the speed of data entry was also influenced by the
type of interface used. Differences were statistically significant
(P<.001). The fastest interface for data entry was the numeric
keyboard, with a mean entry speed ranging from 2.81 (SD 0.06)
to 4.34 (SD 0.08) seconds depending on the type of variable
recorded. This was significantly quicker than the stepper (mean
4.31, SD 0.11 seconds to mean 7.23, SD 0.36 seconds), the
wheeler (mean 5.13, SD 0.14 seconds to mean 8.35, SD 0.21
seconds), and the circle (mean 4.45, SD 0.01 seconds to mean
9.38, SD 0.28 seconds) models. Finally, the less efficient

interfaces were the column (mean 5.25, SD 0.16 seconds to
mean 10.49, SD 0.45 seconds) and character recognition (mean
6.32, SD 0.24 seconds to mean 14.68, SD 0.64 seconds) models.

Table 4 shows data entry accuracy for the different interfaces.
The numeric keyboard was the most accurate interface
(96.3%-99.3% accuracy). It was followed by the stepper
(97.9%-98.4% accuracy) and the wheel (95.4%-98.6%
accuracy). Other interfaces were associated with more data
recording errors. The other interfaces yielded levels of accuracy
ranging from 93.2% to 94.3% for the column model, 88.6% and
96.1% for the circle, and 81.5% to 86.8% for the character
recognition interface.

Among the tested interfaces, the numeric keyboard achieved
the highest level of accuracy for recording pulse data. When
looking at the mean scores of all 3 measures, the overall
performance of the numeric keyboard was comparable to that
of the stepper and wheel models. With regard to speed of data
entry, the numeric keyboard scored the highest, with results at
least 1.5 times faster than all other interfaces regardless of the
type of variable recorded. Interfaces built based on a
participative design, such as the circle or column, were
associated with additional errors. Character recognition was
found to be the most inaccurate and slowest interface for clinical
data recording (Table 5).

Discussion

These study results can be explained by several factors. First,
the selection mechanism used to enter values into the system
was the most influential factor for determining speed of data
entry. With a deterministic selection mechanism, such as the
keyboard, the actions performed by users are transformed
unambiguously into the associated outcome. This differs from
a nondeterministic selection mechanism, such as character
recognition, where there is no guarantee that the action of the
user is transformed into the desired outcome. The interfaces
with such nondeterministic selection mechanisms require some
level of expertise and training to perform accurate actions that
can be transcribed by the system into the desired outcome. The
number “1” could, for instance, be at misinterpreted as a “7”
and therefore require additional time to be corrected. The second
parameter influencing the speed of data entry is the number of
actions required to record it. In this regard, the stepper is not as
fast as the keyboard because it requires more actions to enter a
given numerical value.

An analysis of the error rate enabled us to classify the interfaces
into 2 main categories: those yielding a level of accuracy greater
than 95% (numeric keyboard, stepper, and wheel) and those
yielding levels less than 95% (character recognition, circle, and
columns). Interfaces offering no immediate feedback and those
where it was difficult to modify recordings (character
recognition, wheel) were associated with a significantly
increased risk of recording errors.
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Table 2. Participant characteristics (N=146).

n (%)Participant characteristics

Age (years)

42 (28.8)22-34

52 (35.6)35-45

52 (35.6)≥46

Gender

96 (65.7)Female

50 (34.3)Male

Hand preference

11 (7.5)Left-handed

135 (92.5)Right-handed

Profession

4 (2.7)Assistant nurse

76 (52.2)Nurse

19 (13.0)Administrative

11 (7.5)Midwife

19 (13.0)Physician

17 (11.6)Other

Has a computer

6 (4.1)No

140 (95.9)Yes

Has a smartphone

57 (39.0)No

89 (61.0)Yes

Frequency of vital sign recording

45 (30.8)Never

12 (8.2)Monthly

89 (61.0)Every day

Table 3. Mean time to enter 3 variables for each interface-sign combination.

PInterface entry time (sec), mean (SD)Data type

WheelStepperNumeric key-
board

ColumnsCircleCharacter recogni-
tion

<.0018.35 (0.21)6.53 (0.36)3.08 (0.06)10.06 (0.34)6.27 (0.14)10.50 (0.44)Pulse

<.0017.22 (0.19)7.23 (0·18)4.34 (0.08)10.49 (0.45)9.38 (0.28)14.68 (0.64)Body temperature

<.0015.13 (0.14)4.31 (0.11)2.81 (0.06)5.25 (0.16)4.45 (0.01)6.32 (0.24)Respiratory rate
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Table 4. Correct data entries for the 3 variables on each of the 6 interfaces.

PCorrect data entries, n (%)Data type

WheelStepperNumeric key-
board

ColumnsCircleCharacter recogni-
tion

<.001432 (98.6)431 (98.4)435 (99.3)413 (94.3)421 (96.1)372 (84.9)Pulse

<.001427 (97.5)431 (98.4)425 (97.0)412 (94.1)388 (88.6)357 (81.5)Body temperature

<.001418 (95.4)429 (97.9)422 (96.3)408 (93.2)413 (94.3)380 (86.8)Respiratory rate

Table 5. Data entry speed and accuracy for different interface characteristics.

Design sourceSelectionMinimum number of actions
measured

Mean accuracy, %Mean time
(sec)

Interface characteris-
tics

LiteratureDeterministic1 per digit97.53.41Numeric keyboard

Android OSDeterministicSum of the digits98.26.02Stepper

Computer scientistsDeterministic1 per digit936.7Circle

iOSNondeterministic1 per number97.26.9Wheeler

CaregiversNondeterministic1 per number93.98·6Columns

Palm OSNondeterministic1 per digit84.410.5Character recognition

Our results are in line with other research findings [13,28,29].
A study comparing 5 number entry interfaces for an infusion
pump [13] showed lower error rates and speed of data entry
when entering values on a number pad rather than a stepper. In
a study evaluating data recording accuracy of a keyboard for
electronic health recording systems compared with handwritten
medical paper records, authors found that 25.6% of vital signs
had one or more errors when documented on paper medical
records compared to 14.9% errors when documented in an
electronic format [28]. This confirms the improved accuracy of
a keyboard compared to handwriting, as used in character
recognition interfaces. Another study by Wager et al [29]
compared error rates for 4 different types of entry devices
(paper, computer on wheel, tablet, and direct feed from the
monitoring system). Although no details were provided about
the interfaces used, the error rate associated with a keyboard on
a tablet was 5.6%, on average, similar to our study findings.

There are several limitations to our study. The first is the lack
of exact knowledge about the prior level of familiarity users
had for each of the 6 interfaces. However, one can reasonably
assume that the novel interfaces implemented for the study were
unknown to all users, whereas numeric keyboard and character
recognition interfaces were probably familiar to computer and
mobile phone users. Our study sample was mostly composed
of the latter (see Table 2). In order to minimize this bias, we
included a training session for each interface in our protocol. It
is unclear whether this was sufficient to ensure a similar level
of mastery for all categories of interfaces, but this limited the
risk of variability due to insufficient training rather than to a
true difference between interfaces [30,31].

A second limitation is the unknown influence of the original
parameters set into the system on study outcomes [32,33].
Indeed, there are many factors that can influence the data entry
process. For instance, the size of the keyboard buttons is known
to influence a user’s performance during data entry [27,34]. On
infusion pumps, such factors can generate up to 28 different

implementations of the data entry interface [13]. In their study,
Cauchi et al [35] confirmed that these parameters not only
influence data entry performance, but also the severity/degree
of recording errors. Likewise, the character recognition
algorithm can facilitate or complicate user inputs [36].
Therefore, if our results show clear and statistically sound
differences in interface usability and accuracy, other studies
analyzing the same interfaces but using different settings may
show different results.

Third, despite explicitly instructing participants to act as they
would normally during the trial session, while at the same time
forbidding observers to intervene after the testing phase, it
cannot be excluded that external observers may have had an
influence on participants’ behavior. For example, participants
may have improved or modified an aspect of their behavior in
response to the context in which they were acting rather than
in response to the type of device used. This is known as the
“Hawthorne effect” [37].

Fourth, the experimental setting cannot be considered as an
ecologically valid one because the experiment took place in a
controlled environment. Although we attempted to minimize
this limitation by asking users to carry the device in only one
hand, the fact that the numbers to enter were provided directly
on the smartphone did not reflect real-life situations, where
numbers are more likely to be read from another source. We
chose this method of data delivery to exclude errors that might
otherwise arise when transcribing data from one place to another
[38].

Fifth, the purely quantitative approach adopted in our study
cannot provide explanations as to why variations exist across
different interfaces and what the implications are for the design
and evaluation of mobile data entry tools. To clearly answer
these questions, a more qualitative methodology needs to be
adopted, such as the one used by Kushniruk et al [8] in their
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analysis of the relationship between usability problems and
prescription errors in handheld applications.

Finally, it is also worth pointing out that evaluating failure based
on a binary measure does not make it possible to evaluate the
type and potential severity of an error. Indeed, studies such as
those carried out by Wiseman et al [39] or Oladimeji et al
[13,40] reported up to 7 classes of errors. Due to this limitation,
our results do not highlight the fact that interfaces that enable
each digit to be chosen independently are much more likely to
create errors of higher magnitude and usually critical in a clinical
context [12,41,42].

Although there is a marked increase in use of handheld devices
in the health care environment, not all interfaces are adapted to
specific constraints, such as smaller, interactive tactile screens.
The possibility of recording clinical information on mobile
devices opens the door to many questions. Interfaces set on
these devices are usually complex to use. In his study, Howard
[43] showed that this complexity could be explained by 4
reasons: intricacy, equivalence, omniscience, and commitment.
To account for these different aspects, the design of a new
interface should evaluate each parameter separately for
effectiveness and accuracy before combining parameters into
a more complex design. Moreover, the identification of the most
appropriate handheld user interface to record numerical data in
an electronic format is only one of the many aspects that need
to be investigated. Further aspects, such as the manipulation of
text data or the recording of graphical data, need to be analyzed
also.

Recording information in real time on handheld devices at the
patient’s bedside is increasingly becoming the standard of care
in many health care settings. These devices offer improved
portability and flexibility compared to desktop computers. The
ease and accuracy with which data can be recorded in such
settings will determine the choice of the most appropriate
human-machine interface. Although a lot of work has been done
on physical keyboards by engineers and ergonomists to improve
the reliability and efficiency of data recording, a lot of work
still has to be done for handheld devices. Our study shows that
among the interface designs we selected, the keyboard reached
the highest level of speed and accuracy when recording pulse
data. The stepper and wheeler interfaces demonstrated similar
accuracy, whereas the numeric keyboard remained by far the
quickest interface for tactile interaction. Whether this conclusion
will remain valid when using other interface parameters remains
to be tested; however, the need for more in-depth evaluation of
novel interfaces has clearly been demonstrated.

Although some interface designs may, at first sight, appear
promising, only formal and rigorous assessments in randomized
trials will enable the identification of the most accurate and
usable interfaces for data recording in the clinical setting. As
the new generation of handheld devices progressively replaces
traditional computers, future developments to find the most
appropriate human-machine interface should not only be based
on designer or user committee inputs, but also on advice from
other fields, such as experts in ergonomics.

Acknowledgments
This work has been funded by the University Hospitals of Geneva.

Conflicts of Interest
The authors are owners or developers of the software used in this study.

Multimedia Appendix 1
CONSORT checklist.

[PDF File (Adobe PDF File), 897KB-Multimedia Appendix 1]

References

1. Lu Y, Xiao Y, Sears A, Jacko JA. A review and a framework of handheld computer adoption in healthcare. Int J Med
Inform 2005 Jun;74(5):409-422. [doi: 10.1016/j.ijmedinf.2005.03.001] [Medline: 15893264]

2. Fischer S, Stewart TE, Mehta S, Wax R, Lapinsky SE. Handheld computing in medicine. J Am Med Inform Assoc
2003;10(2):139-149 [FREE Full text] [Medline: 12595403]

3. Haller G, Haller DM, Courvoisier DS, Lovis C. Handheld vs. laptop computers for electronic data collection in clinical
research: a crossover randomized trial. J Am Med Inform Assoc 2009;16(5):651-659 [FREE Full text] [doi:
10.1197/jamia.M3041] [Medline: 19567799]

4. Mosa AS, Yoo I, Sheets L. A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak
2012;12:67 [FREE Full text] [doi: 10.1186/1472-6947-12-67] [Medline: 22781312]

5. Prgomet M, Georgiou A, Westbrook JI. The impact of mobile handheld technology on hospital physicians' work practices
and patient care: a systematic review. J Am Med Inform Assoc 2009;16(6):792-801 [FREE Full text] [doi:
10.1197/jamia.M3215] [Medline: 19717793]

6. Wu RC, Straus SE. Evidence for handheld electronic medical records in improving care: a systematic review. BMC Med
Inform Decis Mak 2006;6:26 [FREE Full text] [doi: 10.1186/1472-6947-6-26] [Medline: 16787539]

7. Kuziemsky CE, Laul F, Leung RC. A review on diffusion of personal digital assistants in healthcare. J Med Syst 2005
Aug;29(4):335-342. [Medline: 16178332]

JMIR Human Factors 2015 | vol. 2 | iss. 2 | e15 | p. 8http://humanfactors.jmir.org/2015/2/e15/
(page number not for citation purposes)

Ehrler et alJMIR HUMAN FACTORS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=humanfactors_v2i2e15_app1.pdf&filename=ce991ea47e1293e7ddcbd40cb34ba841.pdf
https://jmir.org/api/download?alt_name=humanfactors_v2i2e15_app1.pdf&filename=ce991ea47e1293e7ddcbd40cb34ba841.pdf
http://dx.doi.org/10.1016/j.ijmedinf.2005.03.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15893264&dopt=Abstract
http://jamia.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=12595403
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12595403&dopt=Abstract
http://jamia.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=19567799
http://dx.doi.org/10.1197/jamia.M3041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19567799&dopt=Abstract
http://www.biomedcentral.com/1472-6947/12/67
http://dx.doi.org/10.1186/1472-6947-12-67
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22781312&dopt=Abstract
http://jamia.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=19717793
http://dx.doi.org/10.1197/jamia.M3215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19717793&dopt=Abstract
http://www.biomedcentral.com/1472-6947/6/26
http://dx.doi.org/10.1186/1472-6947-6-26
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16787539&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16178332&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


8. Kushniruk A, Triola M, Borycki E, Stein B, Kannry JL. Technology induced error and usability: the relationship between
usability problems and prescription errors when using a handheld application. Int J Med Inform 2005 Aug;74(7-8):519-526.
[doi: 10.1016/j.ijmedinf.2005.01.003] [Medline: 16043081]

9. Masci P, Zhang Y, Jones P, Thimbleby H. A Generic User Interface Architecture for Analyzing Use Hazards in Infusion
Pump Software. In: MCPS 2014. 2014 Apr 10 Presented at: 5th Workshop on Medical Cyber-Physical Systems; Apr 14,
2014; Berlin, Germany p. 1-14. [doi: 10.4230/OASIcs.MCPS.2014.1]

10. Fairbanks RJ, Caplan SH, Bishop PA, Marks AM, Shah MN. Usability study of two common defibrillators reveals hazards.
Ann Emerg Med 2007 Oct;50(4):424-432. [doi: 10.1016/j.annemergmed.2007.03.029] [Medline: 17498847]

11. Garmer K, Liljegren E, Osvalder A, Dahlman S. Application of usability testing to the development of medical equipment.
Usability testing of a frequently used infusion pump and a new user interface for an infusion pump developed with a Human
Factors approach. International Journal of Industrial Ergonomics 2002 Mar;29(3):145-159. [doi:
10.1016/S0169-8141(01)00060-9]

12. Tu H, Oladimeji P, Li Y, Thimbleby H, Vincent C. The dffects of number-related factors on entry performance. In: BCS-HCI
'14 Proceedings. 2014 Sep 09 Presented at: 28th International BCS Human Computer Interaction Conference on HCI;
September 9-12, 2014; Southport, UK p. 8221-8251.

13. Oladimeji P, Thimbleby H, Cox A. A performance review of number entry interfaces. In: Lecture Notes in Computer
Science. 2013 Sep 2 Presented at: Human-Computer Interactionâ€“INTERACT 2013; September 2-6, 2013; Cape Town,
South Africa p. 365-382. [doi: 10.1007/978-3-642-40483-2_26]

14. Li K, Ding S, Dong Z, Qin L. MediCHI: safer interaction in medical devices. 2013 Apr 27 Presented at: CHIâ€™13; Apr
27-May 2, 2013; Paris, France p. 3267-3270. [doi: 10.1145/2468356.2479663]

15. Kwon S, Kim C, Kim S, Han S. Two-mode target selection: considering target layouts in small touch screen devices.
International Journal of Industrial Ergonomics 2010 Nov;40(6):733-745. [doi: 10.1016/j.ergon.2010.06.006]

16. Zimmerman D, Yohon T. Small-screen interface design: Where are we? Where do we go? 2009 Sep 19 Presented at: 2009
IEEE Int Prof Commun Conf IEEE; Jul 19-22, 2009; Waikiki, HI p. 1-5. [doi: 10.1109/IPCC.2009.5208667]

17. Alghamdi E, Yunus F, Househ M. The impact of mobile phone screen size on user comprehension of health information.
Stud Health Technol Inform 2013;190:154-156. [Medline: 23823407]

18. Ziefle M. Information presentation in small screen devices: the trade-off between visual density and menu foresight. Appl
Ergon 2010 Oct;41(6):719-730. [doi: 10.1016/j.apergo.2010.03.001] [Medline: 20382372]

19. Dillon A, Richardson J, Mcknight C. The effects of display size and text splitting on reading lengthy text from screen.
Behaviour & Information Technology 1990 May;9(3):215-227. [doi: 10.1080/01449299008924238]

20. Duchnicky RL, Kolers PA. Readability of text scrolled on visual display terminals as a function of window size. Hum
Factors 1983 Dec;25(6):683-692. [Medline: 6671649]

21. Reisel J, Shneiderman B. Is bigger better?: The effects of display size on program reading. 1987 Aug 10 Presented at:
Social, Ergonomic and Stress Aspects of Work with Computers; Aug 10-14, 1987; Honolulu, Hawaii p. 113-122.

22. Kim L, Albers MJ. Web design issues when searching for information in a small screen display. 2001 Presented at: SIGDOC
'01 19th annual international conference on Computer documentation; Oct 21-24, 2001; New York p. 193-200.

23. Jones S, Jones M, Marsden G, Patel D, Cockburn A. An evaluation of integrated zooming and scrolling on small screens.
International Journal of Human-Computer Studies 2005 Sep;63(3):271-303. [doi: 10.1016/j.ijhcs.2005.03.005]

24. Jones M, Marsden G, Mohd-Nasir N, Boone K, Buchanan G. Improving Web interaction on small displays. Computer
Networks 1999 May;31(11-16):1129-1137. [doi: 10.1016/S1389-1286(99)00013-4]

25. Coleman MF, Loring BA, Wiklund ME. User performance on typing tasks involving reduced-size, touch screen keyboards.
1991 Presented at: Vehicle Navigation and Information Systems Conference; Oct 20-23, 1991; New York p. 543-549. [doi:
10.1109/VNIS.1991.205799]

26. Siek K, Rogers Y, Connelly K. Fat finger worries: how older and younger users physically interact with PDAs. In: Proceedings
of the 2005 IFIP TC13 international conference on Human-Computer Interaction. 2005 Presented at: INTERACT'05 IFIP
TC13 international conference on Human-Computer Interaction; Sep 12-16, 2005; Rome p. 267-280. [doi:
10.1007/11555261_24]

27. Sears A, Revis D, Swatski J, Crittenden R, Shneiderman B. Investigating touchscreen typing: the effect of keyboard size
on typing speed. Behaviour & Information Technology 1993 Jan;12(1):17-22. [doi: 10.1080/01449299308924362]

28. Gearing P, Olney CM, Davis K, Lozano D, Smith LB, Friedman B. Enhancing patient safety through electronic medical
record documentation of vital signs. J Healthc Inf Manag 2006 Jan;20(4):40-45. [Medline: 17091789]

29. Wager KA, Schaffner MJ, Foulois B, Swanson Kazley KA, Parker C, Walo H. Comparison of the quality and timeliness
of vital signs data using three different data-entry devices. Comput Inform Nurs 2010;28(4):205-212. [doi:
10.1097/NCN.0b013e3181e1df19] [Medline: 20571371]

30. Anderson AM, Mirka GA, Joines SM, Kaber DB. Analysis of alternative keyboards using learning curves. Hum Factors
2009 Feb;51(1):35-45. [Medline: 19634307]

31. Pirhonen A. What do learning curves tell us about learnability. In: Proceedings of the Human Factors Conference HF2002.
2002 Nov 25 Presented at: Human Factors Conference HF2002; Nov 25-27, 2002; Melbourne.

JMIR Human Factors 2015 | vol. 2 | iss. 2 | e15 | p. 9http://humanfactors.jmir.org/2015/2/e15/
(page number not for citation purposes)

Ehrler et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://dx.doi.org/10.1016/j.ijmedinf.2005.01.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16043081&dopt=Abstract
http://dx.doi.org/10.4230/OASIcs.MCPS.2014.1
http://dx.doi.org/10.1016/j.annemergmed.2007.03.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17498847&dopt=Abstract
http://dx.doi.org/10.1016/S0169-8141(01)00060-9
http://dx.doi.org/10.1007/978-3-642-40483-2_26
http://dx.doi.org/10.1145/2468356.2479663
http://dx.doi.org/10.1016/j.ergon.2010.06.006
http://dx.doi.org/10.1109/IPCC.2009.5208667
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23823407&dopt=Abstract
http://dx.doi.org/10.1016/j.apergo.2010.03.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20382372&dopt=Abstract
http://dx.doi.org/10.1080/01449299008924238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6671649&dopt=Abstract
http://dx.doi.org/10.1016/j.ijhcs.2005.03.005
http://dx.doi.org/10.1016/S1389-1286(99)00013-4
http://dx.doi.org/10.1109/VNIS.1991.205799
http://dx.doi.org/10.1007/11555261_24
http://dx.doi.org/10.1080/01449299308924362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17091789&dopt=Abstract
http://dx.doi.org/10.1097/NCN.0b013e3181e1df19
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20571371&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19634307&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


32. Harrison R, Flood D, Duce D. Usability of mobile applications: literature review and rationale for a new usability model.
J Interact Sci 2013;1(1):1-16. [doi: 10.1186/2194-0827-1-1]

33. Hornbæk K. Current practice in measuring usability: Challenges to usability studies and research. International Journal of
Human-Computer Studies 2006 Feb;64(2):79-102. [doi: 10.1016/j.ijhcs.2005.06.002]

34. Sears A, Zha Y. Data entry for mobile devices using soft keyboards: understanding the effects of keyboard size and user
tasks. International Journal of Human-Computer Interaction 2003 Oct;16(2):163-184. [doi: 10.1207/S15327590IJHC1602_03]

35. Cauchi A, Gimblett A, Thimbleby H, Curzon P, Masci P, Cauchi A. Safer "5-key" number entry user interfaces using
differential formal analysis. 2012 Sep 12 Presented at: 26th Annual BCS Interaction Specialist Group Conference on People
and Computers; Sep 12-14, 2012; Birmingham, UK p. 29-38.

36. Lecun Y, Jackel L, Bottou L, Cortes C, Denker J, Drucker H, et al. Learning algorithms for classification: a comparison
on handwritten digit recognition. 1995 Presented at: Neural Networks: The Statistical Mechanics Perspective; Jan 1995;
New York p. 261-276.

37. McCarney R, Warner J, Iliffe S, van Haselen R, Griffin M, Fisher P. The Hawthorne Effect: a randomised, controlled trial.
BMC Med Res Methodol 2007;7(30) [FREE Full text] [doi: 10.1186/1471-2288-7-30] [Medline: 17608932]

38. Li Y, Oladimeji P, Thimbleby H. Exploring the effect of pre-operational priming intervention on number entry errors. 2015
Apr 18 Presented at: 33rd Annual ACM Conference on Human Factors in Computing Systems; Apr 18-23, 2015; Seoul,
Korea p. 1335-1344. [doi: 10.1145/2702123.2702477]

39. Wiseman S, Cairns P, Cox A. A taxonomy of number entry errors. 2011 Presented at: 25th BCS Conference on
Human-Computer Interaction; Jul 4-8, 2011; Swinton, UK p. 187-196.

40. Oladimeji P, Thimbleby H, Cox A. Number entry interfaces and their effects on error detection. In: Proceedings of
INTERACT 2011 Human-Computer Interaction Conference. Heidelberg: Springer; 2011 Sep 5 Presented at: INTERACT
2011: 13th IFIP TC 13 International Conference; Sep 5-9, 2011; Lisbon, Portugal.

41. Thimbleby H, Cairns P. Reducing number entry errors: solving a widespread, serious problem. J R Soc Interface 2010 Oct
6;7(51):1429-1439 [FREE Full text] [doi: 10.1098/rsif.2010.0112] [Medline: 20375037]

42. Oladimeji P. Towards safer number entry in interactive medical systems. 2012 Jun 25 Presented at: 4th ACM SIGCHI
symposium on Engineering interactive computing systems; Jun 25â€“28, 2012; Copenhagen, Denmark p. 329-332. [doi:
10.1145/2305484.2305543]

43. Howard S. Trade-off decision making in user interface design. Behaviour & Information Technology 1997 Jan;16(2):98-109.
[doi: 10.1080/014492997119941]

Edited by G Eysenbach; submitted 02.12.14; peer-reviewed by S Bradley, C Kuziemsky, P Curzon; comments to author 17.04.15;
revised version received 06.07.15; accepted 04.11.15; published 15.12.15

Please cite as:
Ehrler F, Haller G, Sarrey E, Walesa M, Wipfli R, Lovis C
Assessing the Usability of Six Data Entry Mobile Interfaces for Caregivers: A Randomized Trial
JMIR Human Factors 2015;2(2):e15
URL: http://humanfactors.jmir.org/2015/2/e15/
doi: 10.2196/humanfactors.4093
PMID: 27025648

©Frederic Ehrler, Guy Haller, Evelyne Sarrey, Magali Walesa, Rolf Wipfli, Christian Lovis. Originally published in JMIR Human
Factors (http://humanfactors.jmir.org), 15.12.2015. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Human Factors, is properly cited. The complete
bibliographic information, a link to the original publication on http://humanfactors.jmir.org, as well as this copyright and license
information must be included.

JMIR Human Factors 2015 | vol. 2 | iss. 2 | e15 | p. 10http://humanfactors.jmir.org/2015/2/e15/
(page number not for citation purposes)

Ehrler et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://dx.doi.org/10.1186/2194-0827-1-1
http://dx.doi.org/10.1016/j.ijhcs.2005.06.002
http://dx.doi.org/10.1207/S15327590IJHC1602_03
http://www.biomedcentral.com/1471-2288/7/30
http://dx.doi.org/10.1186/1471-2288-7-30
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17608932&dopt=Abstract
http://dx.doi.org/10.1145/2702123.2702477
http://rsif.royalsocietypublishing.org/cgi/pmidlookup?view=long&pmid=20375037
http://dx.doi.org/10.1098/rsif.2010.0112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20375037&dopt=Abstract
http://dx.doi.org/10.1145/2305484.2305543
http://dx.doi.org/10.1080/014492997119941
http://humanfactors.jmir.org/2015/2/e15/
http://dx.doi.org/10.2196/humanfactors.4093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27025648&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

