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Abstract

Background: The new sepsis definition has increased the need for frequent sequential organ failure assessment (SOFA) score
recalculation and the clerical burden of information retrieval makes this score ideal for automated calculation.

Objective: The aim of this study was to (1) estimate the clerical workload of manual SOFA score calculation through a
time-motion analysis and (2) describe a user-centered design process for an electronic medical record (EMR) integrated, automated
SOFA score calculator with subsequent usability evaluation study.

Methods: First, we performed a time-motion analysis by recording time-to-task-completion for the manual calculation of 35
baseline and 35 current SOFA scores by 14 internal medicine residents over a 2-month period. Next, we used an agile development
process to create a user interface for a previously developed automated SOFA score calculator. The final user interface usability
was evaluated by clinician end users with the Computer Systems Usability Questionnaire.

Results: The overall mean (standard deviation, SD) time-to-complete manual SOFA score calculation time was 61.6 s (33).
Among the 24% (12/50) usability survey respondents, our user-centered user interface design process resulted in >75% favorability
of survey items in the domains of system usability, information quality, and interface quality.

Conclusions: Early stakeholder engagement in our agile design process resulted in a user interface for an automated SOFA
score calculator that reduced clinician workload and met clinicians’ needs at the point of care. Emerging interoperable platforms
may facilitate dissemination of similarly useful clinical score calculators and decision support algorithms as “apps.” A user-centered
design process and usability evaluation should be considered during creation of these tools.

(JMIR Hum Factors 2017;4(2):e14) doi: 10.2196/humanfactors.7567
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Introduction

As electronic medical records (EMRs) have propagated through
the US health care system, they have brought both great promise
and great problems [1,2]. One unintended consequence of
increasing EMR adoption that has been recently characterized

is physician burnout associated with EMR-associated clerical
tasks [3]. The high clerical burden of these tasks may be a
consequence of variable attention given to usability and
user-centered design by vendors [4,5]. Health information
technology interfaces that are not well adapted to clinician
workflow can both increase clerical workload and potentially
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pose safety risks to patients [6-8]. As in other industries,
medicine has sought to overcome task-related inefficiencies
through automation [9].

Automation of computer interaction in clinical medicine can
take many forms. Automated information retrieval is commonly
utilized to generate shift hand-off and inpatient rounding reports,
significantly reducing time spent on information retrieval tasks
[10-12]. Automating clinical guideline implementation through
clinical decision support rules has also been done to reduce
practice variability by promoting standards of care [13,14]. A
recent change in the definition of sepsis has opened a challenge
to create and implement clinical decision support that could
reduce the clinician workload of information retrieval and
processing specific to the sequential organ failure assessment
(SOFA) score [15].

In March 2016, the operational definition of sepsis was updated
to include a change in SOFA score ≥2 compared with baseline
(ΔSOFA) [15]. The updated definition has been controversial
[16-20]. The SOFA score, which assesses organ dysfunction in
six domains, was created in 1996 to describe sepsis-related
organ dysfunction [21]. Originally, the SOFA score was
calculated at admission [21]. With time, usage has been extended
to include serial recalculation using the most abnormal values
during the preceding 24 h [22]. However, the new sepsis
definition suggests that the SOFA score would need more
frequent recalculation to identify sepsis in real time.

The prospective time-drain imposed by the new definition may
not be trivial; previous studies have indicated a time-cost of
about 5 min for information retrieval and manual score
calculation per patient [23]. Consequently, methods to include
automated SOFA score calculations in daily clinical reports
have been created [24,25]. EMR interfaces have advanced since
those studies and the time-drain of manual SOFA calculation
may have changed. Additionally, these previous automated
SOFA score calculators were used in printed daily reports and
have not been adapted to meet clinician needs for real-time use
at the bedside.

The goals of this study were to (1) quantify the current
time-drain of manual SOFA score calculation and (2) describe
the user-centered design process and usability evaluation of an
EMR-integrated real-time automated SOFA score calculator
interface.

Methods

Setting
This study was performed at Mayo Clinic Hospital, St Marys
Campus in Rochester, Minnesota. The study protocol was
reviewed and approved by the Mayo Clinic Institutional Review
Board.

Time-Motion Analysis
Internal medicine residents were observed calculating baseline
and current SOFA scores during their medical intensive care
unit (ICU) rotation over a 2-month period. Residents utilized
Mayo Clinic’s locally developed EMR for data retrieval. The
instrument (website, mobile phone app, etc) utilized to perform

the calculation was at the clinician's discretion. Total calculation
time and calculation instrument were captured for each
observation. The total time-cost was calculated using average
task completion time, assuming one SOFA score calculation or
patient day, and extrapolated to the total number of patient
medical ICU days at St Marys Hospital in Rochester, MN during
a 1-year period.

Interface Development and Usability Evaluation
The user interface was designed using an agile development
process involving stakeholders from critical care medicine and
information technology. Agile software development is a
user-centered design process where programs are built
incrementally in many short development cycles. These
development cycles are analogous to plan-do-study-act cycles
utilized in clinical quality improvement. In contrast with
traditional “waterfall” linear software development, end-user
testing and feedback is performed during each agile
developmental cycle rather than during the last phase of the
project. Agile software development utilizes close collaboration
between developers and end users to guide improvements during
each cycle—this feature allows early customization of the user
interface (UX) to meet the clinician end user’s information
needs. Close involvement of clinician end users throughout the
development process has been shown to improve usability and
end-user utilization of the resulting product [26,27].

The algorithm underlying the SOFA score calculator was
previously validated for daily score calculation [25] and updated
to facilitate more frequent recalculation every 15 min. With
each recalculation, the 24-h calculation frame is shifted by 15
min. During the initial planning phase, clinician stakeholders
were interviewed to determine essential and nice-to-have user
interface features and how to display information for each SOFA
subcomponent. Next, a UX mockup was constructed using
Pencil (Evolus, Ho Chi Min City, Vietnam), an open-source
multi-platform graphical user interface (GUI) prototyping tool,
and returned to clinician stakeholders for review and comment.
To complete the cycle, changes were made to the UX prototypes
by developers and returned to clinicians for review and
feedback. We continued iterative UX development cycles until
a consensus was reached on interface design. The interface
underwent a total of four iterative development cycles spanning
2 weeks before consensus was reached. The final UX was
integrated into clinical workflow through our institution’s ICU
patient care dashboard by adding indicator icons to our unit-level
multipatient viewer. The indicator icon changes when the
ΔSOFA criteria have been met but does not trigger a visual
alert. A mouse-click on the indicator displays the automated
SOFA score calculator interface (Figure 1).

The final UX was evaluated with the Computer Systems
Usability Questionnaire administered through REDCap [28,29].
The questionnaire was sent to all potential end users not
involved in UX development who were scheduled to work
during the 2 months after the interface had been made available
for clinical use. A 5-point Likert scale was used for each item.
Responses to each item were categorized as favorable (4-5),
neutral (3), or unfavorable (1-2). Each question item belonged
to one of three domains—system usability, information quality,
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and interface quality [28]. The proportion of question items
categorized as favorable, neutral, and unfavorable was calculated
for the overall questionnaire and within each domain.

All statistical analysis for study was performed with R version
3.3.1 [30]. For the time motion analysis, linear regression was

performed to assess the relationship between hospital day and
calculation time. Descriptive statistics were used to describe
the survey participants’ clinical roles and the proportion of
responses within each usability domain.

Figure 1. Example of the automated sequential organ failure assessment (SOFA) score calculator’s final implemented user interface.

Results

Time-Motion Analysis
Fourteen internal medicine residents were observed calculating
35 baseline and 35 current SOFA scores for patients admitted
to the medical ICU under their care. The overall mean (SD)
calculation time was 61.6 s (33). The time required to calculate
the current SOFA score was significantly lower than the baseline
score (39.9 s [8.3] vs 83.4 s [36.0]; P<.001). Most participants
(9/14, 64%) manually entered data points into a Web-based
score calculator; the remainder used a mobile phone app. There
was a significant linear association between current hospital

day and time to calculate baseline score (P<.001, R2=.54). If
we extrapolated the time-cost to an entire year within our
institution’s 24-bed medical intensive care unit, the cumulative
time required for one extra manual SOFA score calculation for
each patient day (6770 patient days) would be about 116 (64)
hours. This amounts to almost 5 extra hours of work per ICU
bed distributed among our medical intensive care clinicians.

Interface Design and Usability Evaluation
Clinician stakeholders identified several key features during
the initial stakeholder analysis. Essential needs identified by
clinicians reflected their clinical information needs: (1) ability
to quickly identify when the ΔSOFA≥2 (vs baseline) threshold
had been passed; (2) ability to quickly view current, baseline,
and previous SOFA scores from the current hospitalization,
broken down by SOFA score component; (3) ability to quickly
identify when data was missing for each SOFA component and
if data was carried forward; (4) ability to quickly identify the
source data used for each SOFA component calculation; and
(5) high accuracy. Items 3-5 reflect the concerns several
stakeholders expressed about the potential for automation bias
with this tool [31]. One nonessential need was identified:
Displaying prognostic mortality risk associated with each SOFA
score. All identified information needs were incorporated into
the initial UX mockup. Major UX changes during the
development process included (1) formatting and coloring
changes to highlight extreme or missing data for each SOFA
component, (2) changes to the ΔSOFA threshold indicator, and
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(3) changes to limit the quantity of daily SOFA scores visible
for prolonged hospitalizations.

Fifty computer systems usability questionnaires were distributed
to clinicians who had the opportunity to use the tool in clinical

practice during the 2-month period. We received 24% (12/50)
responses. The questionnaire was completed by 11% (1/9)
residents, 17% (4/24) fellows, and 42% (7/17) attending
physicians. A summary of user usability feedback is shown in
Figure 2.

Figure 2. Percent of responses categorized as favorable, unfavorable, or neutral within each domain from the postimplementation computer usability
scale questionnaire (respondents=12).

Discussion

Principal Findings
The first part of our study estimates the time-drain of manual
SOFA score calculation with a modern EMR system and
describes an attempt to mitigate these inefficiencies with an
EMR-integrated automated SOFA score calculator created
through a user-centered design process. Our time-motion
analysis found that the current time required for manual
calculation using a modern EMR has improved compared with
a study performed 5 years prior [23]. However, these efficiencies
may be obscured by the need for repeated calculation under the
new sepsis definition. Real-world usage would likely dictate
more frequent recalculation and consequently automation would
be more desirable as the cumulative time requirements increase.

The second part of our study describes the iterative,
user-centered design process for an EMR-integrated automated
calculator “app” for the SOFA score. Clinician stakeholders
worked closely with developers throughout the rapid UX
development process. The resulting interface was favorable to
clinician end users in all three usability domains assessed
(system usability, information quality, and information quality).

Comparison With Prior Work
Several other clinical scores have been automated for clinical
practice—examples include APACHE II [32,33], APACHE IV
[34], CHA2 DS2-VASc [35], Charlson comorbidity score [36],
and early warning systems [37]. These studies primarily focused
on algorithm validation rather than information delivery. The
information delivery needs for clinicians using these clinical

scores depends on the clinical context; many clinical scoring
systems are used at decision points in patient care and clinical
practice guidelines (CPG). Clinicians’poor CPG adherence has
been recognized for many years [38]. Consequently,
user-centered design processes have been utilized to improve
CPG adherence though clinical decision support—ranging from
surgical pathways to guideline implementation—with favorable
results [26,39-42].

Future Directions
Future demand for SOFA score calculation in clinical practice
may be dependent on policy from the Centers for Medicare and
Medicaid Services (CMS), which is still recommending the use
of the previous definition of sepsis outlined in the Severe Sepsis
or Septic Shock Early Management (SEP-1) bundle because of
concerns about increasing cases of missed sepsis under the new
definition [16,17,19]. CMS adoption of the new sepsis definition
would likely spur a significant increase in the usage of the SOFA
score by linking quality metrics and payments. Because of the
time-cost of score calculation in an otherwise busy clinical
setting, manual SOFA score recalculation may only be
performed after the clinician has already suspected new onset
sepsis due to physiologic changes noted at the bedside. In this
situation, application of the ΔSOFA definition (≥2 over baseline)
would be confirmatory and not predictive—counter to the
Surviving Sepsis Campaign’s goal to improve early recognition
of sepsis [43]. However, by automating the SOFA score
calculation process and repeating the calculation as new clinical
information becomes available, the ΔSOFA criteria could
effectively function as a sepsis sniffer. Further studies would
be needed to compare the effectiveness of the ΔSOFA criteria
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as a “sepsis sniffer” against other “black box” sepsis detection
algorithms being developed [37,44-48]. The application of the
ΔSOFA criteria as a “sepsis sniffer” does have promise—a
recent retrospective study demonstrated that SOFA has greater
discrimination for in-hospital mortality in critically-ill patients
than either quick SOFA (qSOFA) or systemic inflammatory
response syndrome (SIRS) criteria [49].

The pairing of the automated SOFA calculator algorithm with
the user-centered UX design may hold advantages over these
machine-learning based “black box” algorithms—our underlying
algorithm is based on a familiar, well-validated clinical score
and the visualization of each SOFA component allows clinicians
to “look under the hood” to explore the source data behind each
item’s value. The ability to verify the source data within the
UX reflected the information needs of our clinician stakeholders
identified during the agile software development process. With
the “black box” algorithms of artificial neural networks and
other machine learning techniques, a comparable level of
transparency is not possible. Finally, traditional externally
validated clinical scores, like SOFA, may be more generalizable
than machine-learning algorithms [50]. The external validity
of these machine learning algorithms is dependent on the
diversity of the data sources used for training and
cross-validation, whereas traditional clinical scores adopted
into CPGs have already been externally validated. Consequently,
researchers may have an opportunity to translate and distribute
traditional clinical scoring models as automated computerized
algorithms through interoperability platforms.

The emerging “substitutable medical apps, reusable technology”
(SMART) on “fast healthcare interoperability resources” (FHIR)
interoperable application platform is a promising avenue to
bridge the gap between standalone applications and EMR
integration [51]. Additionally, the platform offers a means to
reduce the 17-year gap between clinical-knowledge generation
and widespread usage [52]. Under this platform, interoperable
applications can be developed and widely distributed like
popular mobile phone apps. Calculator apps and other forms of
clinical decision support are currently being “beta-tested” on
this platform [53]. In the future, researchers developing clinical

scores or computer-assisted decision algorithms may be
encouraged to develop similar interoperable applications. In the
“app” domain, whether on a mobile phone or integrated into
the EMR, usability is an important feature that must be balanced
with functionality to encourage widespread adoption. The agile
development process described in this paper involved clinicians
in the development process early and often, leading to an
EMR-integrated “app” that met both clinician information and
usability needs within a concise 2-week timeline.

Limitations
The primary limitation of this study is that the clinician
stakeholders are from a single institution and their needs might
not match the needs of clinicians elsewhere. However, a similar
user-centered design and evaluation process could be utilized
at other institutions to create and customize a similar tool.
Second, clinician survey response rate was low. We aimed to
include residents, fellows, and critical care attending physicians
with exposure to the tool to obtain perspectives from a wide
variety of clinical roles. However, nearly all survey responses
were provided by critical care attending physicians and fellows.
The tool appeared to meet the usability needs of these content
experts.

Conclusions
The incorporation of SOFA scoring into the sepsis definition
potentially adds about 1 min per patient (calculation) to an
intensive care clinicians’ workload—an amount that is
compounded when recalculation is performed multiple times
daily to confirm if ΔSOFA criteria have been met. This added
workload can be eliminated through automated information
retrieval and display. To generate the information display for
an EMR-integrated automated SOFA score calculator, we
utilized a user-centered agile design process that resulted in a
user interface with >75% of usability features receiving
favorable ratings across the system usability, information
quality, and interface quality usability domains. Usability
evaluations are important as clinical decision support algorithms
are translated into EMR-integrated applications.
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