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Abstract

Background: The complexity of health care data and workflow presents challenges to the study of usability in electronic health
records (EHRs). Display fragmentation refers to the distribution of relevant data across different screens or otherwise far apart,
requiring complex navigation for the user’s workflow. Task and information fragmentation also contribute to cognitive burden.

Objective: This study aims to define and analyze some of the main sources of fragmentation in EHR user interfaces (UIs);
discuss relevant theoretical, historical, and practical considerations; and use granular microanalytic methods and visualization
techniques to help us understand the nature of fragmentation and opportunities for EHR optimization or redesign.

Methods: Sunburst visualizations capture the EHR navigation structure, showing levels and sublevels of the navigation tree,
allowing calculation of a new measure, the Display Fragmentation Index. Time belt visualizations present the sequences of
subtasks and allow calculation of proportion per instance, a measure that quantifies task fragmentation. These measures can be
used separately or in conjunction to compare EHRs as well as tasks and subtasks in workflows and identify opportunities for
reductions in steps and fragmentation. We present an example use of the methods for comparison of 2 different EHR interfaces
(commercial and composable) in which subjects apprehend the same patient case.

Results: Screen transitions were substantially reduced for the composable interface (from 43 to 14), whereas clicks (including
scrolling) remained similar.

Conclusions: These methods can aid in our understanding of UI needs under complex conditions and tasks to optimize EHR
workflows and redesign.

(JMIR Hum Factors 2020;7(4):e18484) doi: 10.2196/18484
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Introduction

Background
The ubiquity of electronic health record (EHR) systems has
transformed the health care landscape over the past several
decades. Yet, even as improved patient care and cost savings
have begun to emerge, significant usability impediments have
been well documented [1]. One such usability issue for EHRs
is display fragmentation, which can be defined as the location
of clinical elements or other care-related information on different
screens or in different parts of the EHR, or in ways that require
searching, scrolling, or other navigation actions to access [2].
Display fragmentation can affect EHR-mediated workflow and
the clinician’s ability to analyze patient health information and
provide optimal patient care [3].

Research on EHR system usability, including display
fragmentation, has often characterized problems at a rather high
level of abstraction (eg, violations of usability principles) or in
terms of the user’s expression of dissatisfaction. Researchers
are beginning to develop new approaches to documenting
problems with increasing granularity and specificity as an
extension of usability studies [4]. However, few granular
methods have been applied to display fragmentation. Thus, the
researcher’s ability to understand the impact of display
fragmentation on usability, develop potential solutions, and
evaluate these solutions is limited.

The work presented in this paper addresses this gap and problem
by describing the theoretical background behind display
fragmentation and its impact on a clinician’s ability to provide
safe and high-quality patient care. It also introduces 2 methods
for granularly assessing display fragmentation in health
information technology (HIT) systems so that this challenge
can be diagnosed, and system redesigns can be proposed.

Display Fragmentation and Task Fragmentation
Display fragmentation occurs in EHR systems when a user must
click through and view many different screens or parts of screens
to view all relevant clinical information [2]. This requires
sequential viewing and calls for retaining information in memory
while other information is sought. This sort of fragmentation
may also occur in a densely populated or cluttered screen
requiring much in the way of cognitive resources to locate
information. Display fragmentation is closely related to and
overlaps with 2 other types of fragmentation involved in clinical
care. One is information fragmentation—the location of
important information sources in forms outside the EHR, often
in several different modalities such as paper records, faxes that
have been scanned to a repository, messages from staff, and
even Post-it notes [5]. This type of fragmentation is extremely
common in health care, as it is often not possible or desirable
for all patient information to be contained merely within the
EHR [5]. Processes that predate EHRs and remain operative
can determine information location and health professional use
of patient information. Information fragmentation can contribute
to the deleterious effects of display fragmentation, as
information may not be available at the point of care and, as a
result, may impair information seeking, clinical reasoning, and
the subsequent quality of decision making by health

professionals [6,7]. Information and display fragmentation share
a core problem that makes it difficult for the health care provider
to access needed patient data or pertinent EHR functions.

Although both display fragmentation and information
fragmentation involve challenges accessing needed information,
their point of emphasis is different. Display fragmentation
emphasizes how features of an interface result in a user devoting
cognitive resources to interacting with system complexity (eg,
unnecessary actions) rather than thoughtful completion of the
patient care task. The construct of information fragmentation
emphasizes the difficulty of assembling needed information,
some of which may be available outside of the system or
application, and some of it may rely on the robustness of clinical
communication as in patient handoff.

Another form of fragmentation is task fragmentation, in which
there is a separation of the parts of a task in undesirable ways
[6]. For example, the task may be broken into too many steps,
or the steps are redundant. This usually slows the overall process
of performing tasks using a system, such as an EHR, while at
the same time increasing the cognitive load for the user (eg,
physician or nurse) performing the task. Undesirable task
fragmentation is often a result of display fragmentation and
information fragmentation forcing the user to take additional
actions to view related material to support their information
seeking and decision making. It also fragments the user’s
optimal workflow and can lead to workarounds for completing
tasks [8]. This is especially the case when new systems introduce
new ways of performing cognitive and physical work (eg, to
support a therapeutic decision) [9]. This may also be due to
other circumstances, including interruptions and the need to
reprioritize clinical activities.

HIT systems such as EHRs often create new workflows or can
be disruptive to existing workflows, leading to increases in
cognitive and physical burdens [3,8,10]. For example,
researchers found that the use of a computerized physician order
entry system introduces additional steps to view the patient
overview as compared with the work practices before the
implementation [11]. Systems that are not coextensive with
clinical workflow may increase the frequency of task switching
and multitasking, thereby contributing to a fragmented
experience [10]. A recent review of EHR usability and safety
literature concluded that navigation is a crucial component of
usability [12]. The authors of this paper argue that further
usability research is necessary to identify and categorize
navigation actions with greater precision [12]. These mapping
efforts can provide a uniform approach to EHR usability
research and enable systematic comparison between different
systems [13].

Research has also shown that reasoning and decision making
by clinicians can be highly sensitive to and influenced by the
structure and organization of information and information
categories in menus and lists, as it is displayed in an EHR system
itself [14,15]. The fragmentation of clinical information can
create inefficiencies and lead to suboptimal diagnostic reasoning
[14,15]. This suggests a need to more closely scrutinize the
impact of display fragmentation on clinical cognition. We do
this by developing a new method for characterizing
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fragmentation guided by a cognitive engineering framework.
Our approach is interdisciplinary and focuses on the
development of methods and tools to assess and guide the design
of computerized systems to support human performance [16,17].

Cognitive Engineering: Characterizing and Visualizing
Fragmentation
User interaction can be analyzed as a combination of elementary
cognitive, perceptual, and motoric behaviors [18]. All 3 elements
are necessary for any task, and specific task-system
combinations may be of a more memory-intensive nature or
require more in the way of perceptual and motor behavior [19].
Users divide their cognitive resources between navigating
through the system interface and performing specific tasks at
hand (eg, documenting vital signs) [20]. Seamless navigation
is characterized by a fluid interaction in which the effort
expended while interacting with the system interface is minimal.
Systems of greater navigational complexity necessitate that
more effort be devoted to interacting with the system and less
to thoughtful task completion [21].

Specific interface elements such as screen layout, pull-down
menus, and dialog boxes can affect the levels of optimality or
complexity in system interaction [22]. Optimizing the form in
which information is displayed, accessed, and documented is
dependent on identifying and understanding the flow of specific
tasks [21]. Understanding the levels of fragmentation and
navigational architecture by mapping specific vendor EHRs can
have many applications, including the creation of new navigation
tools and streamlining workflows, improving the usability of
systems, and decision making. The navigational complexity can
be operationalized and measured in terms of the flow or level
of interactivity for a given task [21].

This paper describes the methodology behind 2 new approaches
for visualizing and quantifying display fragmentation and task
fragmentation as they apply to clinician use of EHRs. In the
Methods section, we will describe the approaches in detail,
including their methodology and examples of their application
(titled Illustrations). In the Results section, we will present the
results of the illustrations to gain insights into display
fragmentation and task fragmentation. The short-term goal of
this research, as reflected in this paper, is to show how these
methods can provide valuable insight into HIT interface
challenges related to display, information, and task
fragmentation. The long-term goal is to improve the design of
HIT interfaces, such as EHRs, so that they have better fit-to-task,
lower cognitive burden, and can enhance clinical decision
making, thus improving patient quality of care and safety.

Methods

Overview
Two methods used to visualize and characterize display
fragmentation and task fragmentation were sunburst diagrams
and time belt visualizations, respectively. We first present each
of these methods in detail and 3 illustrations that exemplify how
each of these methods can be applied to analyze display
fragmentation and task fragmentation.

Method One: Sunburst Diagrams for Describing
Display Fragmentation
To understand display fragmentation, we developed sunburst
diagrams as a method for visualizing system navigation and,
subsequently, display fragmentation. Using these diagrams, we
developed a measure to quantify display fragmentation and
allow easy comparison between systems.

Navigation in menu-based systems is typically represented in
the form of a tree arrangement; on the top-level screen, menus
are usually displayed in a left-hand column or as tabs across
the top or both. The root of the tree represents the highest-level
screen, and each level of the tree and its leaves represent
subsequent menu and submenu choices and varying levels of
branching downward. The sunburst diagram presents an
alternative, more concise representation of system navigation.
The visualization shows the highest level of the system or tree
as the first, innermost wrapped circle, and successive levels in
the system or tree as successive concentric circles (Figure 1).
Screens or levels of navigation that are in the same hierarchical
level appear as segments within the same circle. The screens at
different hierarchical levels appear as different circles.
Therefore, a diagram with a greater number of circles indicates
more system levels and screen transitions.

To begin building a sunburst diagram, a modified cognitive
walkthrough is performed, in which the researcher steps through
all levels of the system’s navigation systematically, recording
the menu structures and substructures and how they lead to
different clinical data elements or other affordances [15]. This
differs from usual cognitive walkthrough methods in that the
aim is to create a map of the navigation structure of the EHR,
rather than to elucidate the steps needed in the performance of
specific tasks. We term this a modified cognitive walkthrough
to make this distinction. After the modified walkthrough, the
recorded information serves as the data that populate the
sunburst diagram (Figure 1). Excel (Microsoft), for example,
has a built-in sunburst diagram function that automatically
creates the diagram based on the data. Figure 2 provides another
example of a sunburst diagram that highlights a specific
pathway.
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Figure 1. An example of sunburst chart data in Excel describing the system architecture (A) and the resulting sunburst diagram (B).

JMIR Hum Factors 2020 | vol. 7 | iss. 4 | e18484 | p. 4https://humanfactors.jmir.org/2020/4/e18484
(page number not for citation purposes)

Senathirajah et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Interactive sunburst highlighting one pathway (in green) from a root screen (Provider View) to a specific element (Legionella Antigen Urine
lab results). The traced pathway is also described in the linear flow above the sunburst diagram. This diagram shows how 9 different screens must be
navigated to access the desired element from the main screen.

Sunburst diagrams are advantageous in that, in addition to
visualizing the structure and tracing pathways, we are also able
to calculate the number of clicks, screen transitions, and other
navigation actions needed, such as scrolling or filtering. For
example, we can first shade the segments of the diagram that
represent target information or screens a specific color (as in
Figure 2). Knowing that the transition from one circle in the
diagram to another represents a change in screens, and the
transition from one segment in a circle to another segment in
the same circle represents a click or perhaps screen scroll to
view, we can use the sunburst diagram to systematically
calculate the number of transitions and navigational actions
needed to navigate from one target piece of information to
another. We used this benefit of the sunburst diagram to create
a measure to quantify display fragmentation and navigational
complexity, which provides a basis for comparison between
systems or between tasks. We termed this measure Display
Fragmentation Index (DFI).

The DFI captures (as in Figure 3): the overall number of
different content categories into which the required information
is split; the different levels of the tree structure, with each level
requiring additional clicks; navigation to elements at the same
level, which also requires at least one click or scroll action (with
multiple scroll actions counted as 2, as an average owing to the
variability of such screens across cases); and the menu length
(parallel items, which appear adjacently) at each stage, as this
reflects the complexity of choice (and hence a taxing cognitive

task) among menu items and results in greater visual search.
Menu length is also highly indicative of the navigation time
[23].

Thus, we can calculate DFI using the following equation:

DFI = E + IS(XIS) + C(Xc) + SS(Xss) + ML

where E refers to the number of data elements, IS the number
of intermediate screens (transitions), C clicks (navigation
action), SS scrolling screens (navigation action), ML menu
length, and X a multiplier applied to each variable based on the
number of levels traversed.

E does not have a multiplier because it simply represents the
number of information elements that need to be accessed,
regardless of their location.

To calculate this measure, we focus on the main obvious
navigation paths as the measured pathway. As many EHRs may
have several routes to get to an item, the fragmentation measure
is a reasonable maximum; for some tasks, one may not have to
go up all levels to get to the next item, as just the lower levels
may be involved. The actual trajectory may vary depending on
the user’s goals and preferences; the one presented is the longest
reasonable pathway.

In this illustration, we show how sunburst diagrams allow easy
comparison of fragmentation and navigational complexity
between systems and can be used to calculate DFI.
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Figure 3. Display Fragmentation Index element calculations. DFI: Display Fragmentation Index.

Illustration Overview: Using Sunburst Diagrams to
Describe Display Fragmentation in EHRs and
Developing a Measure to Quantify Display
Fragmentation
To show how sunburst diagrams can be used to describe and
quantify display fragmentation, we illustrate how we used
sunburst diagrams to visualize display fragmentation for 2
different, widely used, commercial EHRs. The context of this
illustration is that the research team sought to understand the
extent of display fragmentation in commercial EHRs, including
differences in navigational architecture. Thus, the team
conducted a modified cognitive walkthrough and used the
sunburst diagram to display the results.

The team then conducted a more traditional, task-oriented
cognitive walkthrough emulating the process of clinicians
conducting general case reviews. This is a second step in the
method, after creating the general navigation map described in
the Method One section above. Data and information types for
this task included admission notes, laboratory results, orders,
medications, allergies, study reports (eg, of imaging or other
studies), images (if available), discharge summaries, primary
care and specialist provider notes, medications, demographic
and insurance data, and nursing notes (if available), and
automated data from devices or mobile apps, if applicable. Most
current EHRs house similar data types together, necessitating
complex navigation to see all relevant types while evaluating
a patient case.

Once the diagram was created, the number of screen transitions
and levels of navigation were counted using the visualization,
and DFI was calculated.

Method Two: Time Belts for Mapping User Workflow
and Task Fragmentation
We also developed a method for visually characterizing user
workflow and task fragmentation. Visualization methods provide
a systematic way of graphically representing information in a
way that allows for understanding work and cognitive processes.
Cognitive visualization methods allow for the use of visual
metaphors for gaining insights into user mental steps and
mapping of user workflow. Many of these methods are linear,
but there are nonlinear metaphors as well, such as the desktop,
tree, or swimlane metaphors. Understanding how EHR
navigational structure affects workflow can be aided by
additional mapping of the user’s actions while performing a
task.

Time belt visualizations involve the linear depiction of the
different phases and actions of a user (Figure 4). The different
information types viewed, durations, and repetitious navigation
to the same elements or element types can all be conveyed
succinctly to understand a user’s work patterns. In the diagrams,
the percentage of time shown in each section of the system is
easily identified by a key, and the time sequence of the user is
clearly shown from the start of interaction with a system to the
completion of a task. Such an approach can be used to
graphically depict an individual user’s patterns in accessing
components of an EHR over time for comparison purposes (eg,
comparing residents vs attending physician interactions with
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cases of differing complexity). Zheng et al [24] investigated the
variation in preoperative workflow findings in 2 hospitals.
Suboptimal patterns were identified, and the reasons for the
variation were explored. Although both settings used the same
EHR system, they observed marked differences in patterns of
workflow with consequences for patient care. Figure 4 shows
an example of a time belt that represents workflow as a series
of discrete tasks representing their sequence (color-coded) and
their duration (width of the colored segment). A simple
representation can be used to compare clinicians, EHRs, patient
conditions, and visit types. The time belt reflects the overall
flow across the patient’s encounter. We can also drill down to
examine the navigational complexity for specific tasks, such as
medication reconciliation.

Time belts can be used to compare time on tasks across different
systems, as well as the time spent on different tasks. This
representation enables us to scrutinize task performance at a
granular level, including time spent on different tasks,
fragmentation in terms of repeated tasks, and sequential ordering

of tasks. We can also examine each segment and determine the
degree of interactivity. Importantly, we can break down a task
and characterize clinicians’ clinical reasoning and, specifically,
how diagnostic and therapeutic reasoning evolves over the
course of time.

We also calculated the proportion per instance. Zheng et al [24]
derived a measure of task fragmentation that relates the time
on task for subtasks, normalized for EHR time. Their measure,
time proportion per instance can be used to compare EHR tasks
in different settings:

Proportion per instance = Instance task time/Number of task
instances × Total EHR time

This is based on average continuous time (ACT) in which
increased task fragmentation results in decreased time for a
subtask [3]. The longer the ACT, the lower the task
fragmentation. The proportion per instance normalizes this to
accommodate total EHR time so that longer sessions do not
inflate the measure.

Figure 4. An example of time belt visualization for 5 patient cases in preoperative care at a large tertiary care hospital. One single horizontal belt or
row represents 1 patient case. The length of the belt indicates the case duration in seconds. Each belt comprised a sequence of tasks performed by the
nurse and represented as color-coded segments. For example, Allergies refers to the task of checking allergies.

Illustration Overview: Using Time Belts to Compare
Task Fragmentation and Workflow for a Conventional
EHR and a Composable EHR
We developed an experimental EHR interface to address some
of the issues of fragmentation and cognitive load [25-27]. The
following illustration details how the described visualization
techniques were used to compare a commercial EHR with the
experimental system.

The context for this illustration was a larger study where medical
residents were recruited and presented with a series of cases
using real patient data in a conventional EHR or the
experimental system. The patient data were collected at a large
health care site as part of a larger study examining
EHR-mediated nursing workflow. For each of the cases, the
patients were seen by other clinicians previously, and the study
participants were asked to review the documentation, determine
the reason for the patient’s problem, and present a therapeutic
and management plan of action. The participants’ interactions
with the systems were captured by Morae (TechSmith) [28], a
powerful video recording and analytics tool widely used in
human-computer interaction research. Participants were also
asked to think-aloud while completing the tasks, and their
dialogue was recorded and transcribed.

After the study, the recordings were analyzed, and time belt
visualizations were created to compare time on tasks across the

conventional and experimental systems. Note that this
illustration is meant to show how time belt visualizations can
be used to surface different dimensions of clinical cognition. It
is not intended to compare the efficacy of the conventional and
experimental systems, but rather exemplify how their interfaces
yielded different patterns of interaction.

For the purpose of this illustration, we present the results for
one resident participant who used the conventional EHR system
to examine a patient case, John Smith, and a second participant
who used the experimental system to examine the same patient.
In the scenario, John Smith had an extensive medical history
and presented with an array of cardiac and other clinical
problems. He is in the emergency department (ED) due to
exertional chest pain starting 2 hours previously (severe, 10/10,
sharp or stabbing, localized as substernal, radiating to the back).
The clinician is an ED physician treating the patient and has
some past EHR records, including 2 prior progress notes and
medical or surgical history, laboratory values, allergies, social
history, and medications.

Illustration Overview: Putting It All
Together—Sunburst and Time Belt Visualizations
We present a third and final illustration in which we show the
2 visualization methods in tandem. The context for this
illustration is similar to the one for the time belts: a larger study
where medical residents were recruited and presented with a
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series of patient cases that used anonymized but real patient
data in the conventional EHR or experimental system.

Participant interaction with the system was recorded and then
used to create a time belt to show the time spent on each screen
or element. Similarly, the EHR was mapped using the sunburst
diagram, and the resulting Excel sheet was used to show how
the user participant navigated across the system.

Results

Illustration Results: Using Sunburst Diagrams to
Describe Display Fragmentation for an EHR System
and Developing a Method to Quantify Display
Fragmentation
The sunburst diagram for the cognitive walkthrough of the first
conventional EHR is presented in Figure 5. The elements
colored in black represent the information relevant to the clinical
task used for the cognitive walkthrough—general case review.
One can see how the relevant information elements are scattered
across different paths, levels, and main sections.

Using the DFI measure described above, the DFI for the sunburst
diagram presented in Figure 5 was calculated as follows:

DFI = 36 + 136 + 136 + 39 = 347

Note there are no scrolling screen terms incorporated into the
above equation.

Thus, it is easy to conclude that the degree of fragmentation for
this conventional commercial EHR is rather high and could
likely lead clinicians to spend a large amount of time and
cognitive resources while navigating, viewing, and retaining
information.

The researchers also analyzed a second commercial EHR user
interface (UI); the resulting sunburst diagram is presented in
Figure 6. For this system, the DFI was calculated as follows:

DFI = 19 + 47 + 47 + 19 = 132 (again, with no
scrolling screens term)

Thus, this system has a lower DFI (approximately one-third of
the previous system), representing less fragmentation and fewer
navigation levels.

Figure 5. Sunburst diagram representing display fragmentation of clinical data in a conventional, commercial electronic health record. Elements colored
in black are those relevant for handling the clinical problem (general review of patient information). EHR: electronic health record; UI: user interface.
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Figure 6. Sunburst diagram representing display fragmentation of clinical data in a second conventional, commercial electronic health record. Elements
colored in black are those relevant for handling the clinical problem (general review of patient information). EHR: electronic health record.

Illustration Results: Using Time Belts to Compare
Task Fragmentation and Workflow for a Conventional
EHR and a Composable EHR
Figure 7 presents a captured screen from the conventional EHR
system presenting laboratory results for the patient case, John
Smith. In the conventional EHR UI, information is accessible
through a hierarchical set of tabs, menus, and side panels. To
its credit, the conventional EHR UI is well segregated and
organized. Much of the patient information can be accessed
through the display. On the other hand, the interaction space is
immensely complex, and there are multiple ways to access the
same information.

The participant used 346 mouse clicks, including just under 200
left-mouse clicks. In that short span of time, the resident visited
43 display screens, including repeat visits to several displays
(eg, blood gas arterial panel). She experienced some difficulty
locating an appropriate index document, such as a progress note
or discharge summary. As a consequence, the resident devoted
considerable time to searching for information. She focused
largely on laboratory values, some of which seemed anomalous
or contradictory, and then toward the end of the session, came
across 2 ambulatory care text documents (at the 200-second
mark) that facilitated her development of a complete patient
problem representation.

Figure 8 presents the time belt that illustrates the workflow or
time on task for the single resident participant performing the
task on the conventional EHR system. The participant required

6 min and 35 seconds to complete the task. The time belt is
divided into task segments of variable durations.

Figure 9 presents the experimental system interface for the same
case. The interface is entirely configurable. The left-hand panel
contains a set of available documents relevant to the case. There
are only 7 documents, including the contemporary (current)
note, 2 older progress notes, a chest x-ray, labs, and Fishbones.
Users can drag and drop documents and rearrange them
accordingly. The screen below includes 2 rows of documents
in the form of widgets. The first row contains 2 older progress
notes and an x-ray. The bottom row includes the current
document and all laboratory values.

Figure 10 illustrates the workflow or time on task for the resident
performing the task using the experimental system. The task
required 10 min and 48 seconds to complete. The user employed
389 mouse clicks, including only 20 left-mouse clicks. The
remaining clicks reflect the extensive use of the scroll wheel.
In that short span of time, the resident visited 14 display screens,
including repeat visits to the current note and older progress
notes. The current note acts as the index document to understand
the patient’s problem. As we can see, the time belt and other
visualizations can be used to characterize a state of affairs—the
current state of navigational complexity and fragmentation.
They can also be used as guideposts for design at a granular
level of interactive behavior.

As noted, participants’ think-aloud statements were recorded.
Multimedia Appendix 1 presents a summary of the participants’
think-aloud statements as it relates to the time belt presented in
Figure 10.
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Figure 7. Conventional electronic health record (EHR) system user interface (UI).

Figure 8. Time belt visualization of clinical task using commercial electronic health record. Note that the labels for the tasks have been abbreviated
for readability. Each item represents a task, primarily searching and reviewing tasks. For example, “X-Ray” is short for “Reviewing X-Ray,” a task the
clinician completed.
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Figure 9. Experimental system screen with user placement of data elements for the same case as in Figure 8.

Figure 10. Time belt visualization of clinical tasks using experimental electronic health record (EHR) system.

Illustration Results: Putting It All Together—Sunburst
and Time Belt Visualizations
Figure 11 shows the time belt and sunburst diagram data for a
user completing a patient review using a conventional,
commercial EHR. The time belt shows the time spent on each
task or screen. The Excel sheet shows the data for the sunburst
diagram; however, in this instance, cells have been shaded to
show the order and pathway the user took to navigate the system.
For example, the user started on the Data Visualization Screen
(light blue), then navigated to the NYP Tab (orange), then
navigated to Data Review Labs (brown) within that tab, then
Complete Blood Count (yellow), and so on and so forth.

From this combination of the time belt visualization and the
sunburst diagram data scheme, we can see how task
fragmentation corresponds with display fragmentation.
Researchers can easily deduce how the user becomes stuck in

several instances of back and forth navigation between 2 screens,
and viewing sequences involving items far apart (see the number
of orange-shaded cells indicating the user visited NYP Tab).

An example of proportion per instance is provided in Figure 11
time belt. Note that a lower proportion per instance value
denotes more fragmented subtasks per unit time. In the time
belt, this shows as a higher number of bands of the color
corresponding to the task instances in a single patient encounter.

An example use of the measures can be seen to optimize displays
by reducing fragmentation. In the time belt of Figure 12, the
period from 140 to 200 seconds was spent in back and forth
navigation looking at the same 2 elements 3 times each, with a
navigation action screen between. Optimization could consist
of juxtaposing these 2 elements, reducing the need for back and
forth navigation. The proportion per instance would be improved
for the same task.
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Figure 11. Color of each cell or segment represents the task or screen the user was completing in sequential order. The time belt visualization shows
the time taken for each task, whereas the Excel data scheme shows the different screen or part of the system needed for each task.

Figure 12. An example of proportion per instance calculated on the basis of the time belt from Figure 11. Proportion per instance for certain subtasks
have been calculated in the small table to the right as examples. PPI: proportion per instance.

Discussion

Principal Findings
This paper illustrates a set of methods and visualizations to
characterize navigation complexity. It is based on the analytic
work and video capture of users. There is a range of
methodologies that can further inform our understanding of the
problem. For example, eye movement studies have the potential
to elucidate the relationship between the visual apprehension
of information and clinical reasoning [4,29-31]. It should also
be noted that EHR-mediated workflow extends beyond the
confines of navigational complexity to a host of other issues
necessitating convergent methodologies [32-36]. The work
presented in this paper is formative and is part of a growing
body of theoretically motivated research that seeks to expand
the vision of usability and better situate it in the context of
clinical workflow and quantifying complexity [20,21,24,37].

The sunburst diagram can serve many cognitive science,
usability, and workflow analysis purposes. First, a static sunburst
diagram is useful in simply providing a visual representation
of the current system state regarding navigational complexity—it

shows the structure of the system. The diagram can also be used
dynamically and interactively to show the influence of redesign
decisions on navigational complexity or screen fragmentation.
Interactive versions permit clicking on a segment, which will
then be shown as the top (the inner circle) of the resulting
subtree, with subsections as concentric circles (Figure 2). This
can then permit extensive drill-down and visualization of the
entire tree even if it is very complex.

Second, the sunburst diagram permits viewing of the
relationships between different parts of the system and facilitates
the tracing of navigation pathways through the system (Figure
2). Once created, viewers can easily trace pathways for access
to a certain system element or screen and thus further
characterize display fragmentation. Pathway tracing and
navigation map building are completed during a cognitive
walkthrough [38], as described above. In web-based systems,
there are web tools that can automate this process (eg,
Powermapper [39] and edraw [40]), but many major vendor
systems are not web-based. Furthermore, greater insight can be
gained by differentially coloring the segments of the diagram,
which can help to further visualize the degree of fragmentation.
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For example, one color can denote the data of interest, and
another color can denote irrelevant data for a task. Thus,
someone can easily see the proportion of useful information to
extraneous information and take action to redesign the system
to remove the extraneous information.

The sunburst and time belt diagrams are complementary
visualizations. The time belt is a succinct and clearly understood
representation. One can view the distribution of tasks more
readily. The time belt has a more explicit temporal dimension,
which makes it easier to make inferences about the distribution
of time.

Clinical care presents many pressures to the clinician; these are
increased in emergency settings and where cases are complex.
Current EHR systems interrupt clinical reasoning and workflow,
increasing these pressures. The ideal system would rapidly
present salient information and data critical to decision making
and mitigate clinician cognitive load. We have found in studies
of composed displays (where this is the case) that subjects find
that the lack of the usual interruptions due to excessive
navigation is cognitively supportive and helps their thought
process. The methods described here can help to build such
systems.

Ultimately, our aim is to make the arduous and already difficult
work of clinical care smoother, more accurate, less cognitively
demanding, and more pleasant. Ideally, information tools should
be transparent, fun to use, enabling user control and freedom,
and permitting focus on the tasks at hand rather than the tools
themselves. Findings from our formative experiments suggest
that composed displays that minimize the need for navigation
can have this effect (prelim work, Y. Senathirajah et al,
unpublished data, 2021). Some tool use in other domains
approaches the level of artistic integration between users and
tools to accomplish the most difficult of tasks. Although we are
far from this in HIT, perhaps diligent further work can bring us
close to the aim in the future. Consumer tools (such as some
Apple products) have been studied for this quality of pleasure
in use. Many clinicians view EHR use as unpleasant and
unsatisfactory [41]. Reducing navigational complexity and
facilitating task performance may free the clinician to be more
creative, resulting in a more productive and pleasurable
experience.

Although EHR usability has been much criticized, there is a
very large installed base of the current EHR software. In
conducting EHR mapping and task microanalysis, we aim to
move beyond static conventional usability testing and bring
together usability information with very particular guideposts,
provide opportunities for EHR optimization, and more generally
HIT redesign. A distinguishing feature of the composable EHR
approach is its ability to juxtapose elements to decrease
navigational complexity (thus increasing display integration).
Understanding how the current EHR structure imposes
fragmentation on both information access and task performance
opens the way for specific focused redesign, which could shorten
navigational pathways and thus time and effort taken.
Decreasing screen fragmentation decreases the load on working
memory. It could also permit specialized displays with low

cognitive burden and machine delivery of UIs optimized for
tasks.

We have derived useful measures addressing different needs
for the comparison of EHR structure and its effect on navigation
and task performance fragmentation. Having DFI and Zheng’s
proportion per instance permits making a distinction between
different EHRs or their subsections for the same task, and
different tasks carried in the same EHR as well as in different
locations, by different clinician roles, and other factors. DFI
can be used to distinguish EHR structure and navigation,
subtasks for different EHRs, subtask time efficiency, and EHR
interface redesign. Proportion per instance can be used to
distinguish tasks, subtasks for different EHRs, subtasks for the
same EHR but different clinician groups, and subtask time
efficiency.

Subtask time efficiency is an important measure for finding
areas in which EHRs can be optimized. Although DFI has no
time elements, by identifying areas of fragmentation in
navigation structure and therefore likely in task performance,
it can aid in finding areas in which pogo-sticking, that is,
navigating back and forth between elements or sections of the
EHR occurs or is likely to occur. When this occurs repeatedly
(eg, when a clinician reads a note and switches back and forth
repeatedly from the note to a lab values section to check the
current values of laboratory tests against those listed in the
previous note), it is a subtask. The juxtaposition of the two
elements (note and laboratory test results) would avoid this
repetitious navigation, shortening the subtask time, and
removing the excess navigation or clicks. The juxtaposition is
known to foster reduced cognitive load (as data need not be
retained in working memory as it is on screen together),
reflection, the association of data elements, and the identification
of patterns. In the note or labs example, the user will be able to
see the change in laboratory values and the implications of such
changes more easily. Providing both better cognitive support
and shorter times or less navigation would aid in reducing the
burden on clinicians, particularly in high-stress settings. EHRs
are heavily implicated in contributing to physician burnout
primarily because of the mismatch between task and system,
leading to poor efficiency and frustrating navigational
complexity.

Finally, we address the experimental system used in our
illustrations. MedWISER is a system in which elements are
easily arranged by drag or drop. Therefore, we can design novel
UIs using MedWISER using the same elements used in
conventional system tasks (eg, lab panels) to represent data and
experiment with different configurations with the intent to
simplify navigation. In the above subtask example, the clinician
user can juxtapose the note and lab together by drag or drop
without requiring programmer intervention; this is a normal
way the system functions. Thus, the end user, or others such as
researchers or system administrators, can easily rearrange data
elements to foster shorter navigation paths, the juxtaposition of
related elements, and the creation of screens that maximize
support of clinical reasoning while minimizing excess
navigation. The user’s arrangements are stored, and
patient-specific or specialty-specific displays can be shared (eg,
with colleagues taking the next shift for that patient; they can
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also further modify the patient-specific display as new data
comes in), further minimizing excess navigation and multiplying
time savings. Thus, a set of displays could eventually be created
with minimal fragmentation for the tasks being done (as can be
calculated with new displays using our measures to evaluate
degrees of optimization).

Limitations
There are several limitations to this study. Our presentation of
cases is illustrative of the methods and is not representative of
a larger set, which should perhaps be a next step in validating
the work and formulae. Although the representations surface
important dimensions of workflow, the comparative illustration
of different systems cannot be used to infer that one system is
better than another. There are many ways to represent data, and
we have chosen ones that enable us to draw inferences about
fragmentation based on a set of observations. The goal is also
to convey the information visually and reliably so that readers
can readily draw the same inferences or alternatively draw their
own conclusions. However, there are other visualizations that

may convey the same information. It is difficult to definitively
prove that sunbursts or time belts are superior to other forms of
representation. Expanding the space of potential visualizations
can help advance the study of EHR-mediated workflow and,
perhaps, its communication to stakeholders beyond academia.

Conclusions
In this paper, we described a methodological approach to
addressing display fragmentation. Novel visualizations provide
a suite of tools for communicating the exact nature of a
navigation problem and creating the potential for precise and
measurable design solutions. EHRs still present formidable
usability challenges, but the potential for small tractable changes
rather than large-scale prohibitively expensive ones is
increasingly realizable. When combined with platforms such
as MedWISER, which reduce the work involved in
reconfiguration, they could provide pathways for rapid usability
improvements and significantly improved the EHR-mediated
workflow.
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