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Abstract

Background: Use of electronic health records (EHRs) has increased dramatically over the past decade. Their widespread
adoption has been plagued with numerous complaints about usability, with subsequent impacts on patient safety and provider
well-being. Data in other fields suggest biological sex impacts basic patterns of navigation in electronic media.

Objective: This study aimed to determine whether biological sex impacted physicians’ navigational strategies while using
EHRs.

Methods: This is a secondary analysis of a prior study where physicians were given verbal and written signout, and then, while
being monitored with an eye tracker, were asked to review a simulated record in our institution’s EHR system, which contained
14 patient safety items. Afterward, the number of safety items recognized was recorded.

Results: A total of 93 physicians (female: n=46, male: n=47) participated in the study. Two gaze patterns were identified: one
characterized more so by saccadic (“scanning”) eye movements and the other characterized more so by longer fixations (“staring”).
Female physicians were more likely to use the scanning pattern; they had a shorter mean fixation duration (P=.005), traveled
more distance per minute of screen time (P=.03), had more saccades per minute of screen time (P=.02), and had longer periods
of saccadic movement (P=.03). The average proportion of time spent staring compared to scanning (the Gaze Index [GI]) across
all participants was approximately 3:1. Females were more likely than males to have a GI value <3.0 (P=.003). At the extremes,
males were more likely to have a GI value >5, while females were more likely to have a GI value <1. Differences in navigational
strategy had no impact on task performance.

Conclusions: Females and males demonstrate fundamentally different navigational strategies while navigating the EHR. This
has potentially significant impacts for usability testing in EHR training and design. Further studies are needed to determine if the
detected differences in gaze patterns produce meaningful differences in cognitive load while using EHRs.

(JMIR Hum Factors 2021;8(2):e25957) doi: 10.2196/25957
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Introduction

In the last two decades, the percentage of physicians using an
electronic health record (EHR) in their practice has risen from
around 10% to over 80%, driven in varying degrees by federal
initiatives, intra- and internetwork pressure, and perceived
potential advantages. This increase represents a broad shift in

practice patterns that have introduced new challenges into the
process of delivering quality medical care. Though EHRs come
with many benefits such as improved compliance with clinical
guidelines, substantial decreases in medication errors, the ability
to improve care through simulation, and increased cost-savings
at an institutional level, the development and implementation
of the EHR has far outpaced investigation into their downsides
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[1-5]. It is clear that the amount of documentation required per
patient has increased substantially with the advent and
implementation of EHR systems [6]. Interface design, usability,
and interoperability issues have plagued EHRs since their initial
iteration in the 1970s; increased documentation and input
requirements correlate with increased error rates, longer hospital
stays, less job satisfaction, and physician burnout [7-10]. Tools
for understanding the usability patterns of EHRs are sorely
needed in order to better inform system design and provider
training.

The user experience of any type of electronic system such as
an EHR depends entirely around the ways in which the user
navigates the system to produce desired outcomes; an eminently
capable program will be useless if users cannot utilize its
capabilities. Appropriately then, interface navigability is a
consideration at the forefront of electronic system design. Of
course, humans did not evolve with electronic system navigation
as an active evolutionary pressure; instead, the human brain is
optimized for spatial navigation. There are two recognized
spatial navigation strategies: (1) local landmark usage and (2)
distant cues (eg, cardinal directions) utilization [11]. All
neurotypical humans are capable of utilizing either strategy
when required by a given situation; however, individuals have
a reliable tendency to default to one strategy over the other, and
sex is a strong predictor of one’s default strategy [11-15]. In
these spatial tasks, females tend to default to using local
landmarks while males default to utilizing distal cues. Although
social expectations can have an effect on task performance, the
phenomenon of default strategy selection appears to be strongly
influenced by genetic and hormonal factors rather than
socialization [16-19].

Analogous sex differences in navigational strategy have also
been observed in the varied contexts of navigating electronic
screens. Females reported higher utilization of situation-specific
navigational cues during single-site hypertextual (ie, website)
navigation and more frequently used landmarks to guide others
verbally when acting as instructors [20]. Previous work showed
that performance on text-based database querying tasks (eg,
Google, PubMed, etc) improves with increased content
knowledge across both sexes; however, no matter the level of
content knowledge, elementary-school–aged females spent more
time reading documents, formulated fewer overall queries, and
clicked on fewer links per minute than their male counterparts,
although none of these measures correlated with overall task
performance [21]. Constrained to a search task in an area of
low-domain knowledge, middle-school–aged males and females
showed no differences in performance in nonelectronic library
searches but did show a difference in task performance when
using the web, a finding which has been replicated [22,23].
Finally, differences in gaze patterns during the higher-level
analytical tasks of C-program debugging correlated with task
performance [24,25].

Only a handful of studies have investigated eye tracking with
regard to EHR usage with the majority focused on EHR use as
opposed to characterizing user characteristics [26-28].
Previously, our group used eye tracking to characterize general
features of gaze in hospital physicians and found that there were
two distinct workflows: while all participating physicians spent

far more time writing their notes than perusing the chart overall,
one group of physicians perused the chart at length before
opening their notes while the other started their notes
immediately. This difference in workflow was associated with
physician sex in that females physicians were more likely to
peruse the chart before starting their notes [29]. Though no
sex-related performance differences in medical diagnostic
reasoning have been reported thus far, these results showed that
differences in EHR navigation do exist between female and
male physicians. While the impact of sex differences on EHR
navigation remains unknown, what is apparent is that the
increase in EHR use nationally has correlated with a dramatic
increase in physician burnout that is increasingly being
recognized as disproportionately affecting female physicians
[9,10,30].

Simulation affords a powerful tool to better understand the role
of sex in EHR navigation by removing the variability inherent
in analyzing deidentified patient charts and replacing it with a
standardized, validated case that is the same for all participants.
We have previously reported the use of high-fidelity EHR-based
simulation to understand error recognition in simulated intensive
care unit (ICU) charts [28,31-33]. In these preliminary studies,
we incorporated eye and screen tracking to determine whether
gaze metrics could be used as surrogates for EHR performance.
We demonstrated that a number of eye-tracking metrics
correlated with the recognition of embedded safety items within
the chart for the entire cohort. The goals of this study were
twofold: (1) to expand upon the initial data set in order to
analyze whether sex was associated with differential navigation
patterns during simulated EHR exercises, and (2) to determine
the impact, if any, this difference had on task performance.

Methods

This study was approved by the Institutional Review Board at
Oregon Health & Science University. The study was deemed
minimal risk, and formal informed consent was not required.
However, all participants were provided with an information
sheet on our research protocol.

Physicians’ eye movements were recorded with a Tobii X1
monitor–mounted Light Eye Tracker (Tobii Systems) while
completing a previously validated EHR-based simulation
exercise in our EHR environment (EpicCare, Epic Systems Inc)
[4,33]. This simulated instance imported all end-user settings,
preferences, and customized screens so that participants were
able to use their own personalized data gathering tools. We
created 2 simulated ICU patients, each admitted to the ICU for
5 days. We attempted to make the simulated patient scenarios
as robust as possible, with hourly vital signs, lab results, and
nursing, as well as resident and attending notes. Residents and
fellows rotating through the medical ICU were eligible for
enrollment, and thus all had experience with the use of the EHR
in the context of the exercise they were being asked to complete.
Participants were provided a written “signout” and then given
10 minutes to review data on one of the simulation cases, with
instructions to review the EHR as if they were assuming care
for the patient and would be presenting them on rounds, along
with any potential changes in management that would be
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required for their care. At the end of 10 minutes, participants
then presented the care plan for the patient to a member of the
study team. The participants’ performance was assessed by the
number of safety issues they verbalized during this presentation,
followed by a debriefing of the safety issues associated with
the case as previously described [4,31,32]. The physical nature
of the computer station used for the testing was standardized
by fixing monitor, desk, and chair height, as well as tilt and
relative positioning of the monitor at 65 cm from the participant.
Calibration was performed for each subject using a
1-minute–long, 9-point calibration algorithm provided by the
manufacturer.

Once complete, all videos were captured and analyzed with the
vendor’s eye-tracking software (Tobii Studio, Tobii Systems).
Fixations were defined as a period (>60 milliseconds) in which
providers’ eyes tracked without eye velocity exceeding 30
degrees/second. Saccades (rapid scanning eye movements) were
defined as periods with gaze velocity exceeding 30
degrees/second, these definitions being adapted from current
standards within the literature [34]. Static eye tracking on points
for <60 milliseconds were termed “microfixations,” as they did
not meet broadly acceptable standards for the fixations
referenced above. These were present primarily while
participants were retrospectively observed to be reading blocks
of full sentences. Raw tracking data was analyzed using custom
Excel macros designed to calculate more complex variables
(eg, screen distance between fixation points, fixation duration,
etc). Variable distribution was analyzed in GraphPad (GraphPad
Software Inc). Many of the recorded variables were
definitionally bounded on the low end producing one-tailed
variable distributions. Given these distributions, appropriate
nonparametric tests were used to assess for differences between
group means.

Krejtz et al [35] introduced coefficient Κ, seeking to construct
a single, trackable indicator of fluctuation between ambient or
focal eye movements. This metric was designed to track gaze
patterns across visual stimuli (eg, art, visual stimulation tasks,

etc), and their reported results are promising; however, it was
not suitable for answering the question posed in our work, given
that we sought to differentiate between two active self-driven
data extraction strategies (“scanning” vs “staring”), which
requires a variable built to purpose [35]. We thus developed a
novel variable—the Gaze Index (GI)—to denote the ratio of
time spent in long fixation (“staring”) to time spent in saccadic
motion (“scanning”). The GI represents the proportion of time
each participant spent in fixation versus saccade. For example,
a GI of 0.11 would indicate that a participant spent
approximately 9 times more of their screen time in
saccade-microfixation-saccade-etc (a “reading”/“scanning”
pattern) than in full fixation (“staring”). It inherently normalizes
for the time each participant spent viewing the screen, making
the GI a superior representation of participant behavior when
compared to the raw ratio of fixations to saccades.
Normalization to screen time is particularly important given the
top-bounded nature of saccadic movement compared with the
unbounded upper limit of fixation periods, which could easily
skew results based on the finite nature of this time-constrained
task.

For analysis, we correlated individual usability measures to
performance on the simulation. Differences in performance
between groups with specific usability characteristics were
compared using a Mann-Whitney U Test based on the size of
the data set and the nonparametric nature of the data. Normality
was assessed via Kolmogorov-Smirnov. All analyses were
performed using GraphPad Prism (GraphPad Software Inc),
and a P value of <.05 was considered statistically significant.

Results

The data set comprised the eye-tracking recordings of 93
physicians (female: n=46, male: n=47). Of these, 39 (42%) were
interns; the remaining were in their PGY (postgraduate year) 2
year and above. None of the recordings were excluded from
analysis. Self-supplied specialty identifications were similar
between groups (Table 1).

Table 1. Demographics of study participants (N=93).

Males (n=47), n (%)Females (n=46), n (%)Specialty

32 (68)34 (74)Internal Medicine

3 (6)3 (7)Anesthesia

2 (4)3 (7)Pulmonary & Critical Care

3 (6)3 (7)Critical Care

2 (4)1 (2)Emergency Medicine

0 (0)1 (2)Neurology

5 (11)1 (2)Unspecified

Overall, females spent less task time looking at the screen than
males (44.7% vs 55.1%; P=.007, U=767) (Figure 1).

While looking at the screen, the mean fixation (“stare”) duration
of all participants was 212 milliseconds, which is in line with
previously reported mean fixation durations during text-reading
tasks [36]. No difference was found in the number of fixations
per minute between females and males (mean 191.3, SD 5.1 vs

mean 189.7, SD 3.9) (Figure 2A); however, the mean fixation
duration was shorter for females than males (mean 197.6, SD
7.2 vs mean 226, SD 6.6 milliseconds; P=.005, U=740) (Figure
2B). Finally, there was a trend toward an increase in the mean
distance traveled between fixations among females (mean 195.7,
SD 5.1 pixels vs mean 184.6, SD 4.5 pixels; P=.07, U=892)
(Figure 2C).
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We next analyzed saccadic (“scanning”) eye movements.
Females traveled more distance per minute of screen time
(35,026, SD 1065 pixels per minute vs 33,542, SD 943 pixels
per minute; P=.03, U=839) (Figure 3A) and had more saccades
per minute of screen time (347, SD 18 vs 288, SD 16; P=.02,
U=817) (Figure 3B). Furthermore, their periods of saccadic
movement were of longer duration (63.1, SD 2.4 milliseconds
vs 56.4, SD 1.8 milliseconds; P=.03, U=836) (Figure 3C). In
total, female physicians scanned more often and for longer
durations than their male counterparts.

In order to investigate the relative time spent between fixation
and saccadic movement, we calculated GI values for all subjects.
The GI had a wide frequency distribution across all participants
(0.11-7.02). The mean GI of all participants was approximately
a 3:1 ratio, indicating that the participants, on average, spent 3
times as much of their screen time staring as they did scanning:
46 participants had a GI value >3.0, while 47 participants had
a GI value <3.0 (Figure 4).

We termed those users with a GI>3 “starers” and those with
GI<3 “scanners” to qualify their tendency toward either eye
movement relative to the average GI of 3. Interestingly, females
were more likely than males to have a GI<3.0 (2.4 vs 3.4;
P=.004, U=739) (Figure 5A). When looking at GI extremes,
males were more likely to have a GI>5 (odds ratio [OR] 4.51
vs OR 0.22) while females were more likely to have a GI<1
(OR 1.58 vs OR 0.63) (Figure 5B). No differences between
specialties were detected either in pooled analysis or in analysis
within sex groups (not shown).

Lastly, we sought to determine whether differences in navigation
patterns predicted performance in the simulation. Overall, there
were no appreciable differences between females and males in
task performance measured by percentage of existing safety
items identified (39.9, SD 16% vs 38.6, SD 19%; P=.97) (Figure
6). Similarly, when users were grouped by their differences in
GI rather than by sex (GI<1 vs GI>5; GI<3 vs GI>3) there were
no detectable differences in task performance (not shown).

Figure 1. Comparison of percent task time spent looking at the screen between female and male physicians. Each subject is represented by an individual
point with the error bars representing mean (SD).

Figure 2. Comparison of fixation data metrics between female and male physicians. (A) There was no difference in the number of fixations recorded
per minute of screen time. (B) Female physicians had a significantly lower mean fixation duration than their male colleagues. (C) There was a trend
toward female physicians traveling a longer distance between fixation points. Error bars represent mean (SD).
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Figure 3. Comparison of saccade metrics between female and male physicians. (A) Female physicians traveled more screen distance per minute of
saccadic movement than their male colleagues. (B) Per minute of screen time, female physicians had more, separate, and distinguishable periods of
saccadic movement than their male colleagues. (C) The saccadic periods of female physicians were also significantly longer than those of their male
peers. Error bars represent mean (SD).

Figure 4. Plot of the Gaze Index (GI) of all participants. The mean GI of all participants was approximately a 3:1 ratio, indicating that the participants,
on average, spent 3 times as much of their screen time staring as they did scanning: 46 participants had a GI value >3.0, while 47 participants had a GI
value <3.0. Error bars represent mean (SD).

Figure 5. Comparison of the Gaze Index (GI) of female and male physicians. (A) The GI differed significantly between female and male physicians
with the former having a group average of <3 and the latter having a group average of >3. (B) “Superstarers” (those with a GI>5, closed circles) were
disproportionately male (odds ratio [OR] 0.22 vs OR 4.51), while “superscanners” (those with a GI<1, open circles) were disproportionately female
(OR 1.58 vs OR 0.63). Error bars represent mean (SD).
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Figure 6. Comparison of task performance between female and male physicians; no difference was detected. Error bars represent mean (SD).

Discussion

Principal Findings
This study characterized the eye movements of physicians as
they completed a previously validated simulation of prerounding
data collection, and showed that physician sex was associated
with distinctly different patterns of eye movements while
reviewing the EHR. Female physicians tended to scan the
medical chart for both proportionally longer amounts of time
and more frequently than their male colleagues. By contrast,
male physicians spent more of their EHR task time staring at
points of interest for longer periods. No other variable was
correlated with physician GI, and neither physician sex nor any
gaze metric, including the GI, was predictive of task
performance.

Scanning (saccades) and staring (fixations) are inextricably
linked in gaze mechanics. One cannot scan indefinitely and still
process information nor can one fixate indefinitely if they wish
to move between points of interest. As such, a focus on either
type of movement alone would not fully characterize the overall
gaze pattern. For example, a high number of saccades per minute
coupled with a high number of short fixations (as is seen while
reading text) would be a completely different pattern than a
high number of saccades per minute coupled with a smaller
number of longer fixations (as is seen while perusing
quantitative charts). Similarly, a simple ratio of the absolute
number of fixations divided by the absolute number of saccades
would be inadequate to describe a gaze pattern as the duration
of both movement portions would not be incorporated into this
ratio. For the purposes of correlative analysis then, a single
variable taking into account both movement types and their
respective durations is required. In this study, the GI served this
purpose and allowed us to assess whether overall gaze pattern
is associated with any other outcome such as task performance.

Our finding that sex is predictive of differences in physician GI
during EHR usage is consistent with work in other navigatory
domains—both spatial and electronic [11-15,20-22,25]. When
viewed as a whole, the work done in this area supports that
sex-linked navigatorial differences are global and have at least
part of their roots in biology as opposed to being solely linked
to socialization or environmental cues [17-19]. A GI of <3 is
descriptive of a scanning pattern of EHR analysis, examples of
which may include reading text in notes, sequentially scanning
the entirety of a flowsheet, etc. This gaze pattern is even more
strongly represented in those physicians with GI<1, a group
predominantly female. In contrast, a GI value of >3 describes
a fixation-focused pattern of EHR analysis inconsistent with
text reading and more consistent with a longer examination of
fixed data points without reading the sheet in entirety; this is
even more true of those with a GI>5, who were overwhelmingly
male. Our finding that female physicians’ eye movements
represented greater screen distance per time than their male
counterparts while they maintained the same absolute number
of fixations per time also supports this characterization of female
gaze patterns as consistent with linear, sequential scanning.

Our findings thus align with the differences between the sexes
observed in the spatial realm where females default to scanning
local landmarks for orientation while males default to fixating
on distant orienting points. The stronger sorting of strategies
by sex in the spatial realm is likely due to the fact that biology
evolved to deal with this distinction in spatial orienting, whereas
we are detecting the impact of this default spatial navigatory
preference filtered through an entirely different domain (ie, the
EHR). Given this difference, it is remarkable that the effects of
this navigatory default are seen so strongly in the physicians in
our study. That the physicians in our study still sort robustly by
the GI according to sex while navigating the EHR, an artificially
constructed environment full of literally thousands of data points
that require years of education in order to place in context,
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speaks to the foundational level of this navigatory difference
between females and males.

Despite the significant difference in GI between the sexes, we
saw no difference in task performance between females and
males overall. No correlation was found between the GI and
task performance either overall or at the extremes. This is not
a completely unexpected finding. While differences in default
navigatory strategies are associated with significant performance
differences in spatial navigation tasks, there is more variance
in the types and the extent of performance differences exhibited
in various types of electronic navigation as in this study [12].
This is likely in part due to the fact that biologic differences
would have evolved due to evolutionary pressure from spatial
orientation tasks. In addition, there is also the question of the
ability to control for confounding variables in the task. Spatial
navigation tasks are basic and do not involve higher cognitive
reasoning processes; however, the same cannot be said of
medical analysis tasks, which integrate cognition and navigatory
skills. The task assigned to our subjects involved significant
parsing of standardized, simulated ICU patient data, and, as
such, diagnostic reasoning is inextricably tied to the eventual
task score even though the cases themselves are the same
between participants. In line with task load principles, with
increasing task difficulty, one by definition will see load
(cognitive and/or physical) increase before performance
decreases. Therefore, it is plausible that successful completion
of the task only partially depended on electronic navigation and
may not have been focused or challenging enough to elicit a
performance decrease.

Limitations
One important limitation to this study is that we only measured
performance as determined by task completion without assessing
the cognitive load and stress incurred during the task. Indeed,
this may be the more important metric for future studies given
the association of EHR use with burnout and job dissatisfaction.
This is especially important given the number of studies that
suggest significant differences in metrics potentially related to
the EHR between female and male physicians, with female
physicians reporting more compassion fatigue, double the rate
of burnout, lower job satisfaction, lower pay for comparable
work, a larger increase in suicide rate from the baseline
population as compared to their male colleagues, and increased
time pressure during their work [37-41].

Our study had a variety of other limiting features apart from
the inability to measure cognitive load and stress. Given the
secondary analysis of the study, we did not capture all other

potential sociotechnical confounders such as prior EHR
experience from the subjects. As such, our ability to assess
whether other variables of a social or environmental nature were
also associated with the GI was limited. Perhaps most
significantly, the task the physicians performed was not
optimized for the detection of eye-tracking variables and
introduced a number of unnecessary steps between navigation
and scoring given its focus on oral presentations. Physicians
spent significant time looking away from their screen to their
written notes or the provided signout, which limited the amount
of eye tracking performed. Our outcome measure being orally
reported data points meant that oral presentation skills, recall,
and even handwritten data organization were all introduced as
unnecessary confounding variables. While these task limitations
may have increased our chance of type II error with regard to
detection of a relationship between the GI and task score, we
do not expect that they would have increased the chance of type
I error with regard to the detected difference in GI between
females and males. Finally, while all subjects had some
experience with EHRs and specifically were familiar with its
use in the context of the activity being simulated, we do not
have other demographic information on the subjects such as
age, total years of experience with the institution’s specific EHR
system, and experience with other forms of electronic data
interfaces. Thus, we cannot fully exclude these as additional
factors that may serve to confound the observed findings; this
highlights the need to further confirm these findings in a
dedicated, prospective evaluation with a dedicated assessment
of these domains.

Conclusions
In conclusion, the results of our study presented here,
specifically differences in GI, total screen distance traveled,
individual saccadic period duration, individual fixation duration,
etc, support the conclusion that, as a group, female physicians
are more likely to scan longer, more often, and more broadly
while male physicians are more likely to fixate on particular
areas of interest. Demonstrated differences in GI and other
eye-tracking metrics are similar to those seen in other electronic
navigatory tasks in which gaze type maps with performance,
and also similar to eye movement differences seen in spatial
navigatory tasks. This association is concerning as it raises the
possibility that physicians of one sex may be disproportionately
impacted by design considerations of the EHR interface in a
manner that potentially cannot be corrected with end-user
training or mitigated over time with increasing familiarity of
EHR use.
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