
Review

Research Trends in Artificial Intelligence Applications in Human
Factors Health Care: Mapping Review

Onur Asan, PhD; Avishek Choudhury, MSc
School of Systems and Enterprises, Stevens Institute of Technology, Hoboken, NJ, United States

Corresponding Author:
Onur Asan, PhD
School of Systems and Enterprises
Stevens Institute of Technology
1 Castle Point Terrace
Hoboken, NJ, 07030
United States
Phone: 1 4145264330
Email: oasan@stevens.edu

Abstract

Background: Despite advancements in artificial intelligence (AI) to develop prediction and classification models, little research
has been devoted to real-world translations with a user-centered design approach. AI development studies in the health care
context have often ignored two critical factors of ecological validity and human cognition, creating challenges at the interface
with clinicians and the clinical environment.

Objective: The aim of this literature review was to investigate the contributions made by major human factors communities in
health care AI applications. This review also discusses emerging research gaps, and provides future research directions to facilitate
a safer and user-centered integration of AI into the clinical workflow.

Methods: We performed an extensive mapping review to capture all relevant articles published within the last 10 years in the
major human factors journals and conference proceedings listed in the “Human Factors and Ergonomics” category of the Scopus
Master List. In each published volume, we searched for studies reporting qualitative or quantitative findings in the context of AI
in health care. Studies are discussed based on the key principles such as evaluating workload, usability, trust in technology,
perception, and user-centered design.

Results: Forty-eight articles were included in the final review. Most of the studies emphasized user perception, the usability of
AI-based devices or technologies, cognitive workload, and user’s trust in AI. The review revealed a nascent but growing body
of literature focusing on augmenting health care AI; however, little effort has been made to ensure ecological validity with
user-centered design approaches. Moreover, few studies (n=5 against clinical/baseline standards, n=5 against clinicians) compared
their AI models against a standard measure.

Conclusions: Human factors researchers should actively be part of efforts in AI design and implementation, as well as dynamic
assessments of AI systems’effects on interaction, workflow, and patient outcomes. An AI system is part of a greater sociotechnical
system. Investigators with human factors and ergonomics expertise are essential when defining the dynamic interaction of AI
within each element, process, and result of the work system.

(JMIR Hum Factors 2021;8(2):e28236) doi: 10.2196/28236
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Introduction

Influx of Artificial Intelligence in Health Care
The influx of artificial intelligence (AI) has been shifting
paradigms for the last decade. The term “AI” has been often
used and interpreted with different meanings [1], and there is a

lack of consensus regarding AI’s definition [2]. In general, AI
can be defined as a computer program or intelligent system
capable of mimicking human cognitive function [3]. Over the
years, the capabilities and scope of AI have substantially
increased. AI now ranges from algorithms that operate with
predefined rules and those that rely on if-then statements
(decision tree classifiers) [4] to more sophisticated deep-learning
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algorithms that have the capabilities to automatically learn and
improve through statistical analyses of large datasets [5,6].
There have been many studies and advancements with AI as it
continues to evolve in numerous domains, including health care.
AI applications such as MelaFind, a virtual assistant software,
and IBM Watson have been introduced to improve health care
systems, foster patient care, and augment patient safety [7]. AI
applications have been developed and studied for every
stakeholder in health care, including providers, administrators,
patients, families, and insurers. In some specific areas such as
radiology and pathology, there are strong arguments that AI
systems may supersede doctors as a result of studies showing
that AI algorithms outperformed doctors in accurately detecting
cancer cells [8-10].

Further, developments in AI-enabled health information
technologies (eg, AI-enabled electronic health records [EHRs]
or clinical decision support systems) have benefitted from the
availability of big data to predict clinical outcomes and assist
providers in parsing through their EHRs to find individual pieces
of medical information [11]. Despite AI having great potential,
it is still in its infancy. The existing clinical AI systems are far
from perfect for several well-known reasons, including (a)
discriminatory biases coming from the input data; (b) lack of
transparency in AI decisions, particularly neural networks, due
to the black-box nature; and (c) sensitivity of the resulting
decisions to the input data [6,12].

Typical AI-User Interactions
AI systems are complex in the sense of being a black box for
the users who might not have adequate expertise in statistics or
computer science to be able to comprehend the functioning of
AI. Thus, AI can undesirably complicate the relationships
between users and computer systems if not well designed.
Unlike other health care technologies, AI can interact (eg,
through chatbots, automated recommender systems, health apps)
with clinicians and patients based on the inputs (feedback) that

it receives from the user, thus creating what we refer to as “the
interaction loop.” Unlike non-AI technologies, AI’s output
(result generated by the AI) largely depends on the information
fed into it; for instance, in AI-based reinforcement learning [13],
the system may learn and adapt itself based on user input.
Therefore, the human-AI interaction may influence the human
as well as the AI system: the user feeds AI with some
information; the AI learns from this information, performs
analyses, and sends an output to the user; the user receives the
output, comprehends it, and acts accordingly; and the new data
generated by the user’s action goes back to the AI. Figure 1
illustrates three fundamental and typical interaction loops
highlighting fundamental plausible transactions among
clinicians, patients, and the AI system, in which the AI
technology (such as Apple Watch) continuously measures the
user’s health information (heart rate, oxygen level) and sends
the data to the user’s health care provider. The care provider
can then make treatment plans or clinical recommendations
based on the AI results, which will then influence user health
or health-related behavior (Loop 1). Other common user-AI
interactions can be observed in online health services in which
the user interacts with an AI-enabled chatbot for preliminary
diagnoses (Loop 2). The third, but less common, user-AI
interaction is when a doctor and patient together leverage an AI
system for obtaining a better diagnosis in a clinical environment
(Loop 3). For all of these applications, it is essential for the
users to make a correct interpretation of AI outcomes, and to
have a basic understanding of AI requirements and limitations.
The optimum and successful user-AI interaction depends on
several factors, including the physical (eg, timely access to
technology, and visual and hearing ability, particularly of
patients), cognitive (eg, ability to comprehend AI functioning,
ability to reason and use AI-enabled devices), and emotional
(eg, current state of mind, willingness to use AI, prior experience
with AI technology) resources of people (eg, health professionals
and caregivers).
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Figure 1. User-artificial intelligence (AI) interaction loops.

Efforts to Improve AI and the Essential Role of Human
Factors
The developers of health care AI apps have primarily focused
on AI’s analytical capabilities, accuracy, speed, and data
handling (see Figure 2) and have neglected human factors
perspectives, which lead to poorly designed apps [14]. Although
recent studies have reported the impact of biased data [15], as
well as interpretability, interoperability, and lack of
standardization [7,16] on AI outcomes, very few have
acknowledged the need to assess the interactions among AI,
clinicians, and care recipients.

Recently, as acknowledged in the Annual Meetings of the
Human Factors Ergonomics Society [17,18], increasing
autonomous activities in health care can pose risks and concerns
regarding AI. Therefore, there is a need to integrate human
factors and ergonomics (HFE) principles and methods into
developing AI-enabled technologies for better use, workflow
integration, and interaction. In health care AI research, two

factors have not been sufficiently addressed by researchers,
namely ecological validity and human cognition, which may
create challenges at the interface with clinicians as well as the
clinical environment and lead to errors. Moreover, there is
insufficient research focusing on improving the human factors,
mainly (a) how to ensure whether clinicians are implementing
the AI correctly, (b) the cognitive workload it imposes on
clinicians working in stressful environments, and (c) its impact
on clinical decision-making and patient outcome. The
inconvenient truth is that most of the AI showing prominent
ability in research and the literature is not currently executable
in a clinical environment [19,20]. Therefore, to better identify
the current state of HFE involvement in health care AI, we
performed a mapping review of studies published in major
human factors journals and proceedings related to AI systems
in health care. The aim of the mapping review was to highlight
what has been accomplished and reported in HFE journals and
discuss the roles of HFE in health care AI research in the near
future, which can facilitate smoother human-system interactions.
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Figure 2. Illustrating some of the research objectives of experts in human factors and artificial intelligence.

Methods

Design and Data Source
We performed a mapping review to explore the trending and
initial areas regarding health care AI research in HFE
publications. Our protocol was registered with the Open Science
Framework on October 2, 2020 [21]. Mapping reviews are
well-developed approaches to cover the representative literature
(not exhaustive) for exploring and demonstrating trends in a
given topic and time duration [22]. In this study, we selected
major human factors journals and conferences that potentially
publish health care–related work as our data source. Our
selection of journals and conferences was guided by the “Human
Factors and Ergonomics” category of the Scopus Master List
and Scimago Journal & Country Rank. We also added two
journals that potentially publish patient safety-related human
factors work: Journal of Patient Safety and BMJ Quality and
Safety. In total, we explored 24 journals and 9 conference
proceedings (see Multimedia Appendix 1). All the authors
approved the final list of journals and conferences with
consensus.

Inclusion and Exclusion Criteria
We performed an extensive manual search to capture all relevant
articles published in English within the last 10 years (January
2010 to December 2020) in the journals and conference
proceedings listed in Multimedia Appendix 1. In each published
volume, we searched for studies reporting qualitative or
quantitative findings in the context of AI in health care. The
selected studies needed to (1) be framed in the context of health
care; (2) cover an AI algorithm or AI-enabled technology such
as machine learning, natural language processing, or robotics;
and (3) report either qualitative or quantitative
findings/outcomes. We only included journal papers and full

conference proceeding papers. Other materials such as
conference abstracts, editorials, book chapters, poster
presentations, perspectives, study protocols, review papers, and
gray literature (eg, government reports and policy statement
papers) were excluded.

Paper Selection and Screening
Articles in the journal and conference list were manually
screened by two reviewers (AC and a research assistant) based
on titles and abstracts using one of the inclusion criteria (ie, to
be framed in the context of health care). We exported all of the
retrieved publications to Sysrev software. In the second step,
we excluded all ineligible publications (eg, reviews, short
abstracts, and posters), as explained in the preceding section.
In the last step, two reviewers (AC and a research assistant)
independently screened all of the selected full papers based on
the remaining two inclusion criteria: (1) covering an AI
algorithm or AI-enabled technology such as machine learning,
natural language processing, or robotics; and (2) reporting either
qualitative or quantitative findings/outcomes. The reviewers
also confirmed that the studies were framed in a health care
context. The reviewers achieved 82% agreement. The lead
researcher (OA) then resolved all conflicts, screened all of the
shortlisted full-text articles, and finalized the article selection.

Data Extraction and Analysis
We followed a similar data extraction approach and analysis as
reported by Holden et al [23]. Metadata (author names, the title
of the paper, abstract) for each of the included articles were
recorded in a standard Excel sheet. In our analysis, both authors
(AC and OA) coded each included paper on different dimensions
such as (1) sample/participant type, (2) AI system used, (3)
source of data collection, and (4) objective and outcomes.
Studies were also discussed based on the HFE principles such
as evaluating workload, usability, trust in technology,
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perception, and user-centered design. These HFE principles and
subcategories for the dimensions were derived from the final
selected papers and were checked for face validity by the
researchers. We iteratively worked on the data extraction process
and revised the categories to achieve a final consensus.

Results

Summary of Included Studies
Figure 3 illustrates the screening and selection process. As a
result of screening 24 selected journals and 9 conference
proceedings (Multimedia Appendix 1), we finalized 48 articles
matching our inclusion criteria, which were included in the
scoping review with consensus from all reviewers. These 48
articles were published in 10 journals and 3 conference
proceedings, as illustrated in Figure 4.

Figure 3. Selection and exclusion process. AI: artificial intelligence.
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Figure 4. Overview of selected publications and their venues.

Table 1 shows the following dimensions: (1) objective of the
study; (2) overall methods used, including the
ethnographic/quantitative analysis methods adopted, and the
type of data (“Methods and Data” column); (3) study participants
(user of the AI system); and (4) primary outcome/findings of
the study. Most studies involved human participants such as
clinicians and patients (n=33) as shown in the “Study
Participants” column in Table 1. However, some studies used

data from online sources such as Reddit, Twitter, and clinical
databases. Approximately 26 studies conducted surveys and
interviews to gain insight from study participants, as shown in
the “Methods and Data” column. Some studies emphasized
algorithms to analyze video, text, and sensor data. Overall, we
observed that most studies evaluated AI from the user
perspective and others leveraged AI to augment user
performance.
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Table 1. Evidentiary table of selected publications, summarizing their objectives, methods, participants, and outcomes (N=48).

Immediate outcome observedStudy partici-
pants

Methods and DataObjectiveStudy

Delta Associative Memory was effective in
pattern recognition in the medical field and
helped physicians learn

NAa (online
database)

Mathematical/ numerical dataTo promote collaborative learning
among less experienced physicians

Aldape-Pérez et
al [24]

Machine learning’s prediction of surgical
maneuvers was comparable to the prediction
of robotic platforms

37 surgeonsMathematical/video dataTo predict surgical maneuvers
from a continuous video record of
surgical benchtop simulations

Azari et al [25]

Mental health subreddits can allow individ-
uals to express or engage in greater self-
disclosure

NA (Reddit posts
from 7248 users)

Mathematical/text dataTo detect levels of self-disclosure
manifested in posts shared on dif-
ferent mental health forums on
Reddit

Balani and De
Choudhury [26]

Users indicated having greater trust in
SMILY; it offered better mental support,

12 pathologistsSurvey study: Mayer’s trust
model, NASA-TLX, ques-

To identify the needs of patholo-
gists when searching for similar

Cai et al [27]

and providers were more likely to use it in
clinical practice

tions for mental support for
decision-making, diagnostic
utility, workload, future use,
and preference

images, retrieved using a deep-
learning algorithm

Patient age and occupation had the most
substantial influence on depression in breast
cancer patients

84 patientsInterview study using the
Beck Depression Inventory
guide

To analyze the influence of age,
occupation, education, marital sta-
tus, and economic condition on
depression in breast cancer pa-
tients

Cvetković and
Cvetković [28]

Technology acceptance was hindered due
to low technical literacy, low trust, lack of

10 usersInterview study: specific
questions about time and loca-

To learn about one’s health in ev-
eryday settings with the help of
face-reading technology

Ding et al [29]

adaptability, infeasible advice, and usability
issues

tion of usage, users’ percep-
tions and interpretations of the
results, and intentions to use
it in the future

No influence of anthropomorphism was
detected on trust in robots; providers who

102 caregiversSurvey study: Godspeed an-
thropomorphism scale, trust

To study human-robot interaction
in elder care facilities

Erebak and
Turgut [30]

trusted robots had more intention to workchecklist [31], scales from
with them and preferred a higher automation
level

[32], and automated functions
of [33].

Parkinson disease was detected with signif-
icantly higher accuracy when compared to
a clinical reference

42 usersMathematical; sensor dataTo detect motor impairment in
Parkinson disease via implicitly
sensing and analyzing users’every-
day interactions with their smart-
phones

Gao et al [34]

Patients use Twitter to provide input on the
quality of hospital care they receive; almost

NA (Tweets)Survey study; hospitals were
asked to provide feedback re-

To measure the patient-perceived
quality of care in US hospitals

Hawkins et al
[35]

half of the sentiment toward hospitals was,
on average, favorable

garding their use of Twitter
for patient relations

The machine-learning model was successful
in identifying patients with back pain and
responsible factors

44 patients and
healthy partici-
pants

Mathematical; sensor dataTo detect lower back pain from
body balance and sway perfor-
mance

Hu et al [36]

The proposed machine-learning model
identified 12 potential error factors

NA (data from 4
hospitals)

Mathematical/text dataTo identify, extract, and minimize
medical error factors in the medi-
cation administration process

Jin et al [37]

Machine-learning algorithms identified error
rates in imaging, lab, and medication orders

53 cliniciansMathematical/text and numer-
ical data

To predict the accuracy of an order

placed in the EHRb by emergency
medicine physicians

Kandaswamy et
al [38]

Supervised and unsupervised machine
learning classified participants with detec-

32 patients and
healthy partici-
pants

Mathematical/video dataTo detect mild traumatic brain in-
jury (mTBI) via the application of
eye movement biometrics

Komogortsev
and Holland
[39] tion scores ≤ –0.870 and ≥0.79 as having

mTBI, respectively

Interactive visual analytic systems helped
data scientists to interpret predictive models
clinically

5 data scientistsMathematical/ numerical dataTo support the development of
understandable predictive models

Krause et al
[40]

JMIR Hum Factors 2021 | vol. 8 | iss. 2 | e28236 | p. 7https://humanfactors.jmir.org/2021/2/e28236
(page number not for citation purposes)

Asan & ChoudhuryJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Immediate outcome observedStudy partici-
pants

Methods and DataObjectiveStudy

The artificial neural network identified
personality factors as the reason for burnout
in Chinese nurses

465 nursesSurvey study: Nursing
Burnout Scale Short Form

To measure the feasibility of artifi-
cial neural networks in analyzing
nurses’ burnout process

Ladstatter et al
[41]

Artificial neural networks identified a strong
personality as one of the leading causes of
nursing burnout; it produced a 15% better
result than traditional statistical instruments

462 nursesSurvey study: Nursing
Burnout Scale Short Form

To assess whether artificial neural
networks offer better predictive
accuracy in identifying nursing
burnouts than traditional statistical
techniques

Ladstatter et al
[42]

Machine learning–based itchtector algo-
rithm detected scratch movement more ac-
curately when patients wore it for a longer
duration

40 patients and 2
dermatologists

Interview study: user experi-
ence and acceptance of the
device

To determine how wearable de-
vices can help people manage their
itching conditions

Lee et al [43]

Naïve Bayes Kernel resulted in the highest
classification accuracy; it identified a higher
proportion of medication errors and a lower
proportion of procedural error than manual
screening

NAMathematical/text and numer-
ical data

To develop a semiautomated ap-
proach to screening cases that de-
scribe hazards associated with
EHRs from a mandated, popula-
tion-based reporting framework
for patient safety

Marella et al
[44]

AIc-based Gait Assist was perceived as
useful by the patients. Patients reported a
reduction in freezing of gait duration and
increased confidence during walking

18 patients and 5
healthy partici-
pants

Interview study: asking about
usability, feasibility, comfort,
and willingness to use Gait
Assist.

To evaluate the impact of a wear-
able device on gait assist among
patients with Parkinson disease

Mazilu et al
[45]

Natural language processing improved the
classification of safety reports as Fall and
Assault; it also identified unlabeled reports

NAMathematical/text dataTo analyze patient safety reports.McKnight [46]

The performance of natural language pro-
cessing was comparable to a physician’s
manual screening

NAMathematical/text dataTo evaluate natural language pro-
cessing’s performance for extract-
ing abnormal results from free-text
mammography and Pap smear re-
ports.

Moore et al [47]

ASSESS MS was perceived as simple, un-
derstandable, effective, and efficient; both
patients and doctors agreed to use it in the
future

51 patients, 6
neurologists, and
6 nurses

Interview study: feedback
questionnaires, usability
scales

To evaluate the usability and ac-
ceptability of ASSESS MS.

Morrison et al
[48]

Machine learning–based wearable device
correctly identified exercises such as leg
lifts (100% accuracy) but also incorrectly
identified three nonleg lifts as successfully
performed leg lifts (3/18 false positives)

2 physical thera-
pists

Interview study to understand
how physical therapists work
with their patients; user inter-
face design considering usabil-
ity and comfort

To augment the relationship be-
tween physical therapists and their
patients recovering from a knee
injury, using a wearable sensing
device

Muñoz et al
[49]

The machine-learning model accurately
identified 70% of suicidality when com-
pared to the default accuracy (56%) of a
classifier that predicts the most prevalent
class

26 patientsSurvey study: evaluating psy-
chology students’communica-
tion habits using electronic
services

To identify periods of suicidalityNobles et al
[50]

Naïve Bayes and support vector machine
correctly identified handover and patient
identification incidents with an accuracy of
86.29%-91.53% and 97.98%, respectively

NAMathematical/text and numer-
ical data

To automatically categorize clini-
cal incident reports

Ong et al [51]

Depression clusters focused on self-ex-
pressed contextual aspects of depression,
whereas the anxiety disorders and posttrau-
matic stress disorder clusters addressed
more treatment- and medication-related is-
sues

NAMathematical/text dataTo compare discussion topics in
publicly accessible online mental
health communities for anxiety,
depression, and posttraumatic
stress disorder

Park et al [52]

All participants gave contradicting respons-
es

3 researchersInterview study: group discus-
sion

To understand how transparent
complex algorithms can be used
for predictions, particularly con-
cerning imminent mortality in a
hospital environment

Patterson et al
[53]
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Immediate outcome observedStudy partici-
pants

Methods and DataObjectiveStudy

Physicians did not follow tool recommenda-
tions, whereas nonphysicians used diagnos-
tic support to make medical decisions

34 clinicians and
32 nonclinical in-
dividuals

Observation study; the study
indirectly tested the usability
and users’ trust in the device

To analyze the use of a software
medical decision aid by physicians
and nonphysicians

Pryor et al [54]

Identifying games that were a good match
for the patient’s therapeutic objectives was
important; traditional therapists’goals were
concentration, sequencing, coordination,
agility, partially paralyzed limb utilization,
reaction time, verbal reasoning, and turn-
taking

11 therapists and
34 patients

Interview study to understand
therapists’ experiences, opin-
ions, and expectations from
motion-based gaming for
brain injury rehabilitation

To describe a work-in-progress
that involves therapists who use
motion-based video games for
brain injury rehabilitation

Putnam et al
[55]

Strategies to reduce sensory glove complex-
ity and increase its comfort did not affect
system performance substantially

18 surgeonsMathematical/sensor dataTo track surgeons’ hand move-
ments during simulated open
surgery tasks and to evaluate their
manual expertise

Sbernini et al
[56]

Natural language processing was highly
specific (0.97) but had low sensitivity (0.44)
in identifying fall risk compared to manual
records review

NAMathematical/text dataTo identify inpatient progress
notes describing falls

Shiner et al [57]

The study identified inequities in medical
imaging technologies according to regions
in Turkey and hospital ownership

NAMathematical/text and numer-
ical data

To analyze clusters from 12 re-
gions in Turkey in terms of medi-
cal imaging technologies’capacity
and use

Sonğur and Top
[58]

Wavelet-based denoising of galvanic skin
response signals led to an increase in the
percentage of correct classifications of
emotional states, and more transparent rela-
tionships among physiological responses
and arousal and valence

24 residentsSurvey study: self-assessment
manikin questionnaire to
measure emotional response
to the robot

To develop an efficient patient-
emotional classification computa-
tional algorithm in interaction with
nursing robots in medical care

Swangnetr and
Kaber [59]

Nearly half of the total comments analyzed
described positive care experiences. Most
negative experiences concerned a lack of
posttreatment care and insufficient informa-
tion concerning self-management strategies
or treatment side effects

NASurvey study regarding treat-
ment, disease status, physical
activity, functional assess-
ment of cancer therapy, and
social difficulties inventory

To analyze the patient experience
of care and its effect on health-re-
lated quality of life

Wagland et al
[60]

After pharmacist review, only 17% of algo-
rithm-identified patients were considered
potentially undertreated

NA (data from 14
primary care clin-
ics)

Mathematical/text and numer-
ical data

To evaluate a population health
intervention to increase anticoagu-
lation use in high-risk patients
with atrial fibrillation

Wang et al [61]

The proposed system solved the problem
of doctor recommendations to a good effect
when evaluated by domain experts

NA (data from 3
hospitals)

Survey study: systems evalua-
tion from patients’ and doc-
tors’ perspectives

To analyze patients’ interest in se-
lecting a doctor

Waqar et al [62]

The supervised learning and prediction
method developed in this study provided
accurate information on soft tissue insertion
sites using the tibia outlines

20 patientsMathematical/image dataTo achieve personalized identifica-
tion of cruciate ligament and soft
tissue insertions and, consequently,
capture the relationship between
the spatial arrangement of soft tis-
sue insertions and patient-specific
features extracted from the tibia
outlines

Xiao et al [63]

The Sepsis-3 clinical criteria determined by
physician review were met in 343 of 1000
instances

NAMathematical/text and numer-
ical data

To develop and validate an auto-
mated Sepsis-3–based surveillance
system in a nonintensive care unit

Valik et al [64]

Hospitals faced difficulties in translating
the CDSS’s recommendations into routine
proactive output

49 cliniciansInterview and observation
study: organizational work of
technology adoption

To study the implementation of a
clinical decision support system
(CDSS) for acute kidney injury

Bailey et al [65]

Emergency physicians faced lower work-
load and higher satisfaction with the human
factors–based CDSS compared to the tradi-
tional web-based CDSS

32 cliniciansExperimental study: simula-
tion and observation to evalu-
ate the usability

To improve the usability of a
CDSS

Carayon et al
[66]
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Immediate outcome observedStudy partici-
pants

Methods and DataObjectiveStudy

The tool used eight variables (age, gender,
antiplatelet drug, sodium level, antidiabetic
drug, past adverse drug reaction, number of
medicines, living alone) to predict harm
with a C-statistic of 0.69

1280 elderly pa-
tients

Mathematical/numerical dataTo develop and validate a risk
prediction tool for medication-re-
lated harm in older adults

Parekh et al
[67]

Nine physicians emphasized the need for a
prerequisite for trusting the tool. Many
participants preferred the technology to have
roles complementary to their expertise
rather than to perform tasks the physicians
had been trained for. Having a tailored rec-
ommendation for a local context was
deemed critical

15 stakeholders
from hospitals,
academia, indus-
try, and nonprofit
organizations

Survey and interview study:
informal, semistructured
meetings

To understand the needs of the us-
er and design requirements for a
risk prediction tool

Gilbank et al
[68]

425 patients reported that using the Ada
symptom checker would not have made a
difference in their care-seeking behavior.
Most patients found the system easy to use
and would recommend it to others

523 patientsSurvey study to measure ease
of use

To understand the usability, accept-
ability, and utility of AI-based
symptom assessment and advice
technology

Miller et al [69]

The older male conversational agent was
perceived as more authoritative than the
young female agent (P=.03). Participants
did not see an added value of the agent to
the health app

20 patientsInterview study: Acosta and
Ward Scale [71]

To analyze the impact of an embod-
ied conversational agent’s appear-
ance on user perception

ter Stal et al
[70]

Sixteen children found the chatbot useful
and 19 found it easy to use

20 childrenExperimental, participatory
design, and survey study to
measure satisfaction

To evaluate an online chatbot and
promote the mental well-being of
adolescents

Gabrielli et al
[72]

Two experts agreed that OralCam could
give acceptable results. The app also in-
creased oral health knowledge among users

500 volunteersInterview Study to measure
usability (NASA-TLX)

To develop a smartphone camera
for self-diagnosing oral health

Liang et al [73]

Most patients liked using a smartphone as
the assessment tool; they found it comfort-
able (mean rating 4.63 out of 5 with σ=0.73)

91 patients, 40
healthy partici-
pants

Mathematical/numerical dataTo access the feasibility of a mo-
bile sensor-based system that can
measure the severity of pulmonary
obstruction

Chatterjee et al
[74]

Nurses faced challenges using the deep-
learning system within clinical care as it
would add to their workload. Low image
quality and internet speed hindered the per-
formance of the AI system

13 clinicians, 50
patients

Observation and interview
study: unstructured

To evaluate a deep learning–based
eye-screening system from a hu-
man-centered perspective

Beede et al [75]

aNA: not applicable; these studies have only used data for their respective analyses without involving any human participant (user).
bEHR: electronic health record.
cAI: artificial intelligence.

We observed various algorithms in the final selection, with
machine learning being the most common (n=18). Some studies
also compared different algorithms based on analytical
performance. However, few studies (n=5 against
clinical/baseline standards, n=5 against clinicians) compared
their AI models against a standard measure.

Table 2 summarizes the studies that used machine-learning
algorithms. These studies emphasized algorithm development
without considering human factors in substantial depth. In other

words, the technological focus of many studies is currently on
human-AI collaboration in health care while neglecting real-life
clinical evaluation. Discussing studies that primarily focused
on analytical performance is beyond the scope of this review.
The general flaws and trends of such studies have been
addressed in our prior work [7].

Overall, our review indicates that the dimensions of usability,
user’s perception, workload, and trust in AI have been the most
common interest of research in this field.
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Table 2. Artificial intelligence (AI) studies that primarily focused on machine learning (ML) algorithm development (n=18).

Proposed AI model(s) for comparison

(1=compared; 0=not compared)

Other AI/ML/non-AI used in the studyAI/ML recommended by
the study

Reference

Clini-
cians or
user

Clinical or
gold stan-
dard

Existing
system
(not AI)

Other AI
systems

0001AdaBoostM1; bagging; Bayes Net; Dagging;
decision table naïve approach; functional tree;
logistic model trees; logistic regression; naïve
Bayes; random committee; random forest
random subspace; Gaussian radial basis
function network; rotation forest; simple lo-
gistic; support vector machine

Delta Associative MemoryAldape-Pérez et al [24]

0111Not applicableRandom forest and hidden
Markov model

Azari et al [25]

0001Naïve Bayes; k-nearest neighbor; decision
tree

PerceptronBalani and De Choud-
hury [26]

0000Not applicableNeural network and fuzzy
logic

Cvetković and
Cvetković [28]

0111k-nearest neighbor, support vector machine,
decision tree, random forest, naïve Bayes

AdaBoostGao et al [34]

0001Deep neural network with different inputsDeep neural networkHu et al [36]

0001Naïve Bayes; logistic regression; support
vector machine

Random forestKandaswamy et al [38]

0001Unsupervised support vector machine and
unsupervised heuristic algorithm developed
by the authors

Supervised support vector
machine

Komogortsev and Hol-
land [39]

1001Naïve Bayes; k-nearest neighbor; rule induc-
tion

Naïve Bayes kernelMarella et al [44]

0001Support vector machineDeep neural networkNobles et al [50]

1111Support vector machine with a linear functionNaïve Bayes; support vec-
tor machine with radial-
bias function

Ong et al [51]

1111Incident reporting system; manual record re-
view

Natural language process-
ing

Shiner et al [57]

0001Support vector machine; random forest; deci-
sion trees; generalized linear models network;
bagging; max-entropy; logi-boost

Did not recommend any
particular algorithm

Wagland et al [60]

0000Not applicableHybrid algorithm devel-
oped by the authors

Waqar et al [62]

0001Linear regression with regularization; LAS-

SOa; k-nearest neighbor; population mean

The authors developed a
new algorithm

Xiao et al [63]

1100Not applicableThe authors developed a
new algorithm

Valik et al [64]

0010Not applicableThe authors developed an
algorithm based on multi-
variable logistic regression

Parekh et al [67]

1000Random forest, adaptive boostingGradient boosted treeChatterjee et al [74]

aLASSO: least absolute shrinkage and selection operator.

Perception, Usability, Workload, and Trust

Perception
The perception of users was analyzed by several studies to
adequately assess the quality of the proposed AI-based

recommender system. Some studies incorporated perceptions
of both patients and doctors [62,73] in developing their AI
systems. Another study interviewed providers (therapists) about
their experiences, opinions, expectations, and perceptions of a
motion-based game for brain injury rehabilitation to guide the
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design of the proposed AI-based recommender system, which
was a case-based reasoning (CBR) system [55]. The AI system
ASSESS MS was also developed and evaluated based on users’
perceptions [48]. Studies included in our review that developed
AI-based apps [27,29], AI robots [30], and wearable AI devices
such as Gait Assist [45] and Itchtector [43] also accounted for
users’perceptions. From a psychological perspective, emotions
might facilitate perception [76]. One study in our review
measured users’perception of an AI-based conversational agent
[70], and another study developed an AI algorithm for real-time
detection of patient emotional states and behavior adaptation
to encourage positive health care experiences [59].

Usability
Some studies in our review performed usability testing of AI
systems. For example, one study used AI to develop an
adaptable CBR to help therapists ensure proper usability and
functioning of CBR [55]. Guided by users’ needs, one study
[27] developed an AI application (SMILY) to ensure good
usability. Users found the clinical information to have higher
diagnostic utility while using SMILY (mean 4.7) than while
using the conventional interface (mean 3.7). They also
experienced less effort (mean 2.8) and expressed higher trust
(mean 6) in SMILY than with the conventional interface (mean
4.7; P=.01), as well as higher benevolence (mean 5.8 vs 2.6;
P<.001). Another study included in our review noted the literacy
gap as a significant hurdle in the usability of an AI-based
face-reading app, and identified the impact of adaptability and
cultural sensitivity as a limiting factor for usability [29]. Another
study codesigned an AI chatbot with 20 students and performed
a formative evaluation to better understand their experience of
using the tool [72]. Two recent studies measured the perceived
usability of AI-based decision-making tools: Ada, an AI tool
that helps patients navigate the right type of care [69], and
PE-Dx CDS, a tool for diagnosing pulmonary embolism [66].
However, in another study, the researchers primarily focused
on developing the algorithm for assessing the severity of
pulmonary obstruction and obtained users’ feedback on the end
product [74]. Poor usability often leads to an increased
workload, particularly when the user (provider or patient) is not
trained in using the AI system, device, or app.

Workload
Caregivers are subject to workplace stress and cognitive
workload, mostly due to the complexities and uncertainty of
patient health and related treatment [77-79], and AI promises
to minimize the health care workload through the automation
of various levels. Nevertheless, if an AI system or program is
poorly designed, the workload may possibly be elevated. Two
studies in our review used a radial basis function network to
assess burnout among nurses, and consequently captured the
nonlinear relationship of the burnout process with the workload,
work experience, conflictive interaction, role ambiguity, and
other stressors [41,42]. The demand-control theory of work
stress implies that workload abnormalities and job intensity can
aggravate user fatigue by excessive workloads and trigger
anxiety [80]. According to Maslach and Leiter [81], a mismatch
between one’s skill sets (ability to perform a task) and
responsibility (skills required to complete a task) intensifies

users’ workload. Three studies in our review were invested in
minimizing users’ workload by assessing the usability of AI
systems such as ASSESS MS [48], Gait Assist [45], and SMILY
[27].

Trust
Trust shapes clinicians’ and patients’ use, adoption, and
acceptance of AI [6]. Trust is a psychological phenomenon that
supports the inconsistency between the known (clinicians’
awareness, patient experience) and the unknown (deep-learning
algorithms). Three studies included in our review measured
user trust in health care AI systems. One study reported that the
anthropomorphism of AI-based care robots has no influence on
providers’ trust but was significantly related to the level of
automation and intention to work with the robot [30]. This study
proposed that providers who trusted robots more intended to
work with them and preferred a higher automation level [30].
A recent perspective discusses the risk of overreliance or
maximum trust in AI (automation) and instead suggests optimal
trust between the user and AI system [6]. Besides experience,
expertise, and prior knowledge, the performance of the AI
technology also determines users’ trust. A study included in our
review, using a poststudy questionnaire, found that doctors
(pathologists) expressed higher trust in SMILY, an AI-based
application, due to its better performance, interface, and higher
benevolence compared with the conventional app [27]. By
contrast, another study reported lower trust of experienced
physicians in an AI-based recommendation tool due to its
inefficient performance [54]. Based on patient data, expert
physicians were able to identify the alternative and better
explanation for patient health compared to the AI-based tool
[54]. A recent study identified the impact of the AI interface on
user’s trust [68]. Physicians in this study considered AI’s
transparency and performance as facilitators of engendering
trust.

User-Centered Design
A user-centric design requires multidisciplinary cooperation
between HFE experts, technologists, and end users. The
inadequacy of a user-centered design also hinders user
perception, usability, and trust, and increases the possibility of
errors. The majority of the health care AI literature focuses on
quantitative constraints, including performance metrics and
precision, and is less focused on the user-centric development
of AI technologies. Due to the lack of standard guidelines [7,16],
not much research has invested in incorporating a user-centered
design in AI-based technologies within the health care industry.
In this review, we identified studies that performed experiments
involving clinicians and patients, and consecutively evaluated
their AI system’s (eg, app, wearable device) interface [27],
applicability [27,29], and appearance (anthropomorphism) [30]
to ensure user-centeredness. Other studies [43,45,48,49,55,62]
also addressed user requirements such as wearability and privacy
concerns. A recent study further acknowledged the importance
of a user-centered clinical field study, and identified external
factors such as low lighting, expensive image annotation, and
internet speed that can deter the effectiveness of AI systems for
diagnosing diabetic retinopathy [75].
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Discussion

Main Findings
Research concerning AI in health care has shown promise for
augmenting the quality of health care. However, there is a need
for more theoretical advances and interventions that cover all
levels and operations across the health care system. We need a
systematic approach to safely and effectively bring AI into use,
providing human factors, user-centered design, and delivery
and implementation science. Many current AI models focus on
engineering technology (informatics concepts) and do not
sufficiently discuss the relevance of HFE in health care [82].
In this review, we explored and portrayed the involvement of
HFE journals and conferences in health care AI research. We
identified 48 studies, trending as more publications in recent
years, which shows increased attention of the HFE community
in this field.

Although advancement and focus have been made in the use of
machine learning/AI to develop prediction and classification
models, little research has been devoted to real-world
translations with a user-centered design approach. To determine
the diverse relationships between individuals and technology
within a work environment, it is necessary to provide a better
explanation as to how AI can be part of the overall health care
system through a variety of HFE methods such as the Systems
Engineering Initiative for Patient Safety (SEIPS) [83]. The
SEIPS provides a framework that helps in comprehending the
work system (people, tools and technologies, tasks, working
environment, and organization), process (clinical process and
process assisting the same), and outcomes (patient outcome,
organizational outcome) in the health care domain [83]. This
framework also helps to assess and understand the complex
interaction between elements of the work system, and shows
the impact of any technology-based intervention on the overall
system [83].

This review also highlights the need for a systematic approach
that evaluates AI’s impact (effectiveness) on patient care based
on its computational capabilities and compatibility with clinical
workflow and usability. Although some studies have
acknowledged AI’s challenges from both humans factors (biases
and usability) [84] and technical (quality of training data and
standardization of AI) [7] standpoints, less emphasis has been
given so far to the impact of AI integration into clinical
processes [16] and services as well as to the user-centered design
of AI systems for better human-AI interaction [84,85]. At this
stage, where human beings and AI come together, challenges
to human factors will likely arise.

Next Steps
The next push for researchers should be to move AI research
beyond solely model development into sociotechnical systems
research and effectively use human factors principles. HFE
researchers should consider users’ needs, capabilities, and
interactions with other elements of the work system to ensure
the positive impact of AI in transforming health care. Clinical
systems are not inherently equivalent to predictable mechanical
systems and need a systematic approach. One of the pivotal
myths of automation is the assumption that AI can replace

clinicians [33]. In fact, the use of AI can shape the activities
and duties of clinicians, and might help them in their
decision-making. In the domain of medical imaging, AI has
shown great promise and is increasing rapidly. For instance, on
January 18, 2021, an image analysis platform named AI Metrics
received US Food and Drug Administration (FDA) 510(k)
clearance [86]. Likewise, in the last 5 years, approximately 222
AI-based medical devices have been approved in the United
States [87]. As AI continuous to grow, the associated risks also
increase. Many health care AI systems are poorly designed and
not evaluated thoroughly [14], and have neglected clinicians’
limited absorptive and cognitive capacities and their ability to
use AI in clinical settings under a high cognitive workload
[88-90]. Incorrect usage or misinterpretation of AI, similar to
that of EHRs [91], may also result in patient harm. Therefore,
more HFE research should focus on cognitive factors (biases,
perceptions, trust), usability, situation awareness, and
methodological aspects of AI systems.

Usability
A user-centered design is essential for health care technologies,
where the user is centrally involved in all phases of the design
process [92]. However, when the user environment and activities
are varied, designing standardized protocols for health care
devices and software is complicated. As stated in this study, the
problem further increases due to the heterogeneity of
applications and AI variants. The human-computer interaction
community has developed different user-centered design
techniques. However, these methods are often underused by
software development teams and organizations [93].

Usually, AI algorithms are complex, opaque, and thus difficult
to understand. Therefore, it might be difficult for clinicians/end
users to understand and interpret AI outcomes effectively
without adequate instruction. Cognitive ergonomics is a
fundamental principle dealing with usability issues [94].
Necessary procedural information stored in long-term memory
is required to use a technical device [95]. Kieras and Polson
[95] suggested the cognitive complexity theory (CCT) explicitly
addressing the cognitive complexity of the
user-to-device/interface interaction by explaining the user’s
goals on the one hand and the computer system reaction on the
other hand using production rules. The laws of production can
be viewed as a series of rules in the form of IF conditions
(display status) and THEN actions (input or action taken by the
user). According to CCT, cognitive complexity is defined as
the number of production rules segregated and learned in a
specific action sequence. The definition of cognitive complexity
in an AI-based health app can be as helpful as the definition of
production rules (ie, the specification of what the system says
and how users react) and factors that may contribute
concurrently to the app’s complexity (ie, interface, menu
structure, the language of communication, transparency of
functions’ naming). It is, however, debatable whether the mere
counting of production rules will reasonably assess the troubles
perceived by users, considering that various factors contribute
equitably to cognitive complexity. Cognitive computing systems
[96], which are computing systems that can incorporate
human-like cognitive abilities, can also augment and safeguard
health care AI by making AI adaptive (learning from a changing
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environment, changing patient health, changing clinician’s
requirements), interactive (easier human-AI interaction, better
usability, easy to understand), iterative and stateful (narrowing
down on the problem, considering past decisions/consequence
while making current recommendations/tasks), and contextual
(consider contextual elements) [96].

Moreover, challenges and hardships perceived by users might
be a function of several factors not limited to the user’s
experience, knowledge, intention of use, and working
environment [97]. Therefore, an adaptable usability scale that
encompasses the complexity of AI and the common usability
factors applicable to that particular system or software should
be created by HFE researchers. Perception of an AI system or
its perceived ease of use can potentially be a function of users’
cognitive and physical abilities. Additionally, the obvious
question is, where should user-centered design techniques and
knowledge be considered in the life cycle of AI’s development?

Trust and Biases
Human factors research on “automation surprises” primarily
began with large-scale industrialization that involved
autonomous technologies [84,98,99]. The automation surprise
arises when an automated machine acts counterintuitively [100].
In health care, automation surprises might lead to confusion,
higher workload, distrust, and inefficient operations [101]. In
the health care environment, inadequate mental models and
insufficient information about AI-based technology might lead
to automation surprises and negatively influence trust [6]. Trust
can also be hindered if an automated system tends to deter
clinicians’ performance [6]. Research evaluating the
performance of radiologists observed their deterring
performance when aided by a decision support system [102].
Therefore, more HFE studies are needed that explore the factors
and design requirements influencing users’ and clinicians’
optimal trust in AI. Future studies should also focus on patient
trust in AI-generated recommendations.

When automated diagnostic systems are used in real-life clinics,
they most likely are in the form of assistant or recommender
systems where the AI system provides information to clinicians
or patients as a second opinion. However, if the suggestions
made by AI are entirely data-driven without accounting for the
user’s opinion, as is the case for current designs, users could be
biased toward or against the suggestion of the AI system [103].
Optimizing such user-AI trust interplay remains a challenge
that HFE experts should consider as their future endeavor.

It should be noted that advocating for trust in automation for a
prolonged time can also promote automation bias. Aviation
studies have recorded instances of automation biases where
pilots could not track vital flight indicators in the event of failure
due to overreliance on the autopilot [104,105]. A review of
automation bias focusing on the health care literature noted that
the complexity of any assignment and the workload increased
the likelihood of excessive reliance on automation [106], which
can be detrimental to patient safety. Human factors such as
cognitive ergonomics and a user-centered design should be
utilized efficiently to minimize the health care AI system’s
automation biases.

Situation Awareness
Situation awareness is defined as “the perception of the elements
in the environment within a volume of time and space, the
comprehension of their meaning and the projection of their
status in the near future” [107]. “Good” situation awareness is
a prerequisite to better performance [84,107]. There might be
an ongoing discussion around maximum versus optimum
situation awareness. It is critical to understand that the optimum
situation awareness is not necessarily the maximum situation
awareness [108]. Maximizing the user’s situation awareness
does not necessarily yield the best outcome (decisions from a
human-AI collaboration) [108]. For example, concentrating on
irrelevant details such as radio commercials, talking passengers,
or the colors of other cars while driving may unnecessarily
consume the driver’s working memory, increase the workload,
or even act as a distraction [109].

Similarly, in a clinical setting, it is better to achieve optimal
situation awareness rather than maximum situation awareness.
Many studies have shown the deterring impact of excessive and
unnecessary information on clinical work [110,111]. For
example, false or irrelevant clinical alarms may increase the
tension of nurses and even distract them. Performing critical
health care tasks (such as administering narcotic medication,
watching telemetry monitors) demands optimal situation
awareness [112]; however, unnecessary or irrelevant situation
awareness can disturb clinicians’attention and working memory.
Exploration of AI’s influence on clinicians’situation awareness
has not been studied extensively. More HFE-based research is
needed to further explain the concept of optimal situation
awareness in AI design. Both humans and AI each have
skepticism regarding the information generated in their
surroundings and extract the data that seem vital for clinical
decision-making.

Ecological Validation
The development, evaluation, and integration of sophisticated
AI-based medical devices can be a challenging process requiring
multidisciplinary engagement. It may enable a personalized
approach to patient care through improved diagnosis and
prognosis of individual responses to therapies, along with
efficient comprehension of health databases. This solution has
the power to reinvigorate clinical practices. Although the advent
of personalized patient treatment is provocative, there is a need
to evaluate the true potential of AI. The performance of AI
depends on the quantity and quality of data available for training,
as acknowledged in recent review papers [7,16]. Perhaps one
of the most essential facts from the HFE viewpoint is that poor
usability causes improper, inaccurate, and inefficient use [113].
Although the importance of usability testing and a user-centered
design for medical devices has been substantially stated by the
FDA [114] and other HFE experts, both regulatory guidelines
and evaluation approaches fail to reflect the challenges faced
by clinicians during their routine clinical activity [115]. In other
words, most studies identified in our review were performed in
a controlled environment, therefore lacking ecological validity.
This finding is consistent with most other research in the field
of AI and health care. Recent systematic reviews [7,16,116]
analyzing AI’s role and performance in health care

JMIR Hum Factors 2021 | vol. 8 | iss. 2 | e28236 | p. 14https://humanfactors.jmir.org/2021/2/e28236
(page number not for citation purposes)

Asan & ChoudhuryJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


acknowledged that AI systems or models were often evaluated
under unrealistic conditions that had minimal relevance to
routine clinical practice.

Users under stress and discomfort might not be efficient in
utilizing AI devices with poor usability. Unlike research or
controlled settings, a clinical setting demands multitasking
where clinicians (nurses) have to attend to several patients with
different ailments. They also have to write clinical notes,
monitor health fluctuations, administer critical medications,
float to different departments during shortage of staff, educate
new nurses, and respond to protocols in cases of emergency.
Under such a working environment and cognitive workload,
interpreting or learning to use an AI system that is not designed
appropriately can be challenging and risky. Therefore, an AI
system that perfectly qualifies usability tests in a research setting
may fail in a clinical environment. Given these limitations, the
few studies in our review that compared their AI model with
clinical standards (see Table 2) are less relevant because the
comparisons against clinical standards were made in an (ideal)
controlled environment or without providing contextual
information about the patient and the environment [117].
Moreover, the work system elements also differ substantially
from an intensive care unit to an outpatient clinic. Therefore,
AI-based medical systems must be evaluated in their respective
clinical environment to ensure safer deployment.

Limitations of the Review
This review does not include the complete available literature
but was constrained within the selected journals and conferences.
Studies investigating human-AI interactions in a health care
context or leveraging HFE principles to evaluate health care AI
systems published in non-HFE venues such as pure medical or
informatics journals have not been included in this review.
Notwithstanding these constraints, our analysis identified
possible research gaps in the health disciplines that could, if
addressed, help mobilize and integrate AI more efficiently and
safely.

Conclusion
HFE researchers should actively design and implement AI, and
perform dynamical assessments of AI systems’ effects on
interaction, workflow, and patient outcomes. An AI system is
part of a greater sociotechnical system. Investigators with HFE
expertise are essential when defining the dynamic interaction
of AI within each element, process, and result of the work
system. This means that we ought to adapt our strategy to the
situations and contexts in the field; simultaneously, we must
also find practical ways of generating more compelling evidence
for our research.
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