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Abstract

Background: Artificial intelligence (AI), such as machine learning (ML), shows great promise for improving clinical
decision-making in cardiac diseases by outperforming statistical-based models. However, few AI-based tools have been implemented
in cardiology clinics because of the sociotechnical challenges during transitioning from algorithm development to real-world
implementation.

Objective: This study explored how an ML-based tool for predicting ventricular tachycardia and ventricular fibrillation (VT/VF)
could support clinical decision-making in the remote monitoring of patients with an implantable cardioverter defibrillator (ICD).

Methods: Seven experienced electrophysiologists participated in a near-live feasibility and qualitative study, which included
walkthroughs of 5 blinded retrospective patient cases, use of the prediction tool, and questionnaires and interview questions. All
sessions were video recorded, and sessions evaluating the prediction tool were transcribed verbatim. Data were analyzed through
an inductive qualitative approach based on grounded theory.

Results: The prediction tool was found to have potential for supporting decision-making in ICD remote monitoring by providing
reassurance, increasing confidence, acting as a second opinion, reducing information search time, and enabling delegation of
decisions to nurses and technicians. However, the prediction tool did not lead to changes in clinical action and was found less
useful in cases where the quality of data was poor or when VT/VF predictions were found to be irrelevant for evaluating the
patient.

Conclusions: When transitioning from AI development to testing its feasibility for clinical implementation, we need to consider
the following: expectations must be aligned with the intended use of AI; trust in the prediction tool is likely to emerge from
real-world use; and AI accuracy is relational and dependent on available information and local workflows. Addressing the
sociotechnical gap between the development and implementation of clinical decision-support tools based on ML in cardiac care
is essential for succeeding with adoption. It is suggested to include clinical end-users, clinical contexts, and workflows throughout
the overall iterative approach to design, development, and implementation.

(JMIR Hum Factors 2021;8(4):e26964) doi: 10.2196/26964
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Introduction

Ventricular tachycardia and ventricular fibrillation (VT/VF) are
potentially lethal cardiac arrhythmias, which constitute a
growing challenge to health care systems worldwide [1]. The
development of implantable cardioverter defibrillators (ICDs)
has led to major advances in the prevention of death from
VT/VF [2]. ICDs are implantable devices used in patients at
increased risk of sudden cardiac death. ICDs monitor the heart
rhythm continuously to detect and treat VT/VF. In recent years,
remote monitoring has become the standard of care for ICD
patients [3], and follow-ups are based on transmission of data
from the implanted device through the patient’s home
monitoring box. This has reduced the number of in-office
follow-ups [4,5] and increased survival rates [6] due to improved
early detection of arrhythmias [7]. However, the numbers of
ICD implants are increasing worldwide, posing a workload
challenge for electrophysiologists and technicians when
assessing data from incoming transmissions in remote
monitoring centers [8-11]. There is a growing need for
decision-making tools that can support and reduce data-intensive
remote follow-ups, and while current systems can detect and
treat VT/VF arrhythmias as they occur, tools for predicting
arrhythmias before their onset are lacking [12].

Artificial intelligence (AI), such as machine learning (ML),
shows great promise for improving clinical decision-making in
cardiac diseases by outperforming statistical-based models
[12,13], and recent examples include promising models for the
prediction of heart disease and heart failure [14-18], as well as
cardiac arrhythmias, such as ventricular arrhythmia [19], atrial
fibrillation [20], and electrical storm [21]. There are positive
attitudes and high expectations among physicians that AI will
improve future patient care in fields where data are collected
continuously, such as cardiology [22,23].

However, few prediction outcome algorithms based on ML
have been implemented in cardiology clinics because of the
challenges during transitioning from algorithm development to
real-world implementation. While studies of medical AI-based
tools that undergo prospective clinical validation are emerging
[24-27], there is a general lack of understanding of how AI may
support achieving clinical effectiveness and improve patient
care in real-life settings [28,29]. Scholars have argued that
ML-based patient outcome prediction models are yet to prove
their worth to human clinicians [30]. Prediction accuracy by

itself can be impressive in the lab; however, this does not always
translate to better treatment, and it is being stressed to look for
ways to make human and AI prediction algorithms complement
each other, ensuring actionability in clinical practice [30-33].
Going from research and development environments to hospital
or clinical contexts is considered a challenging task that has
been named “the last mile” of implementing medical AI-based
tools [34,35], and there is a call for research on how end-users
find AI-based user interfaces useful in practice [36-39], as well
as studies that report on the sociotechnical challenges of
deploying AI-based tools in complex clinical environments
[27,34,35,40-54].

This study addresses the sociotechnical gap between the
development and implementation of a clinical decision-support
tool based on ML for the prediction of VT/VF in remote
monitoring of ICD patients. The aim of this study was to explore
the feasibility and clinician preimplementation perspectives of
using a prediction tool for improved workflows. Therefore, this
study does not provide algorithmic validation per se but instead
answers questions about the clinical feasibility and workflow
integration of a decision-support tool based on ML.

Methods

Understanding Needs and Co-design of the Prediction
Tool
This study was conducted at the remote monitoring center at
Rigshospitalet, Copenhagen University Hospital, Denmark,
which is a large tertiary hospital covering all aspects of
treatments in cardiology and is among the largest centers in
Europe having more than 4000 patients with cardiac implanted
electronic devices in remote follow-up. The study was organized
in 3 stages (Figure 1). In the first stage, field work observations
in the remote monitoring clinic were conducted to understand
both the clinical workflow and workload [10]. This was followed
by 3 co-design workshops with an electrophysiologist (PKJ)
and 5 co-design workshops with a cardiologist consultant (SZD)
focusing on feature engineering and sketching the user interface.
In stage 2, the AI algorithm was developed, and in stage 3, a
near-live feasibility and qualitative interview study was
conducted. The study was reviewed by the Danish National
Board of Health and the Danish National Committee on Health
Research Ethics, and authorized by The Capital Region of
Denmark.
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Figure 1. Overall study design. ML: machine learning.

Development of the AI Algorithm
A prediction tool was developed for improving the support for
clinical decision-making in ICD remote monitoring based on
the random forest ML method, and it consisted of a risk
prediction algorithm of VT/VF within 30 days. The prediction
tool was designed to show alarm status (yes/no), risk probability
(%), and ranking of the 5 most and least important parameters
for the prediction, using the LIME technique [55] (Figure 2).
The design and development of the tool were informed by
previous fieldwork studies of current practices [10,56], as well
as early results from using ML to predict electrical storm, a
severe form of cardiac arrhythmia [21]. The data set used for
developing the algorithm consisted of 11,921 transmissions
from 1251 patients with an ICD or a cardiac resynchronization
therapy defibrillator (CRT-D), followed over a 4-year period
from 2015 to 2019 at Rigshospitalet. The data set contained
74,149 arrhythmia episodes, each characterized by 7 variables,
such as the type of arrhythmia (VT, VF, supraventricular
tachycardia, atrial fibrillation, etc), ICD treatment of the
arrhythmia, duration of the episode, and maximum heart rate
reached during the episode.

The random forest ML method [44] was selected for algorithm
development because it provided optimal results when
considering the tradeoffs between model performance and
explainability. Several other classifier methods (supervised,
unsupervised, and deep learning methods) were evaluated
through development and testing, including
KNeighborsClassifier [57], GradientBoostingClassifier [58],
AdaBoostClassifier [59], support vector classifier [60], and long
short-term memory (LSTM) [61]. The deep learning method,

LSTM, provided poorer performance and poorer explainability,
possibly due to the nature of the data (ie, time series data with
considerable time between events, making time series modeling
difficult). The other methods provided similar performance.
KNeighborsClassifier and support vector machine had the worst
performance, while the decision tree methods had the best
performance. GradientBoostingClassifier produced an optimal
F1 score and recall score; however, random forest provided the
highest accuracy and precision scores, which led to the choice
of using the random forest method for developing the first
version of the algorithm to be evaluated with end-users in this
study. The algorithm was tested on 2342 of the 11,921
transmissions. The transmission data were stratified and grouped
into training and test sets. This means that the prevalence of the
positive condition was the same in both the training and test
sets (stratified) and that no patient had data in both data sets
(grouped). The algorithm achieved an accuracy of 0.96, with a
positive predictive value of 0.67 and a negative predictive value
of 0.97. The probability threshold for raising an alarm was set
to 0.28, indicating the value with an optimal tradeoff between
negative and positive predictive outcomes.

Feature engineering was carried out in collaboration between
2 data scientists (MKHH and CV) and a cardiologist consultant
(SZD) during 5 co-design workshops. A total of 48 features
(referred to as parameters when discussed with the study
participants) were developed, and the following 2 main
principles were adopted: aggregating episodes by day and
building a historic snapshot for days leading up to the arrhythmic
event. To provide the clinical end-user with algorithm
explainability, the LIME technique [55] was used to show the
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top 5 features that increase or decrease the likelihood of a VT/VF arrhythmic event occurring within the coming 30 days.

Figure 2. The prediction tool on a paper printout as shown to study participants (Case 3, see Table 2). The output shows the alarm (yes/no), risk
probability (%), and up to 5 most important parameters for increasing and decreasing the likelihood of ventricular tachycardia and ventricular fibrillation
within 30 days. To the right: example pictures of electrophysiologists conducting near-live case walkthroughs.

Study Participants and Case Selection
Seven medical doctors specialized in electrophysiology (ie,
cardiologists treating patients with cardiac arrhythmia) were
selected for participation from a convenience sample (Table 1).
Participants included 6 males and 1 female (average age, 52
years; average work experience as an electrophysiologist, 13
years).

A selection of 5 retrospective patient cases (Table 2) was used
to evaluate the feasibility of the prediction tool’s ability to
support clinical decision-making. The cases included high and

low risk probability, true positives, and true negatives, and 2
cases with AF as the primary episode type. Patient cases were
retrieved 19 to 27 months back in time, blinded, and presented
as paper printouts with a summary of each patient’s clinical
history along with reports from the electronic health record (list
of diagnoses, progress notes from the cardiology department,
latest blood tests, and list of medications) and screenshots of
relevant ICD transmission data, including device type, battery
status, device programming and settings, time of implantation,
latest diagnostic information about the transmission, frequency
of arrhythmias, heart rate, device therapy, and assessment of
physical activity.

Table 1. Participating electrophysiologists.

Years since obtaining specialist certification in cardiologyTitleAge (years)SexParticipant

11Consultant cardiologist, MD, PhD52Female1

23Professor, consultant cardiologist, MD, DMSc61Male2

14Consultant cardiologist, MD, PhD55Male3

2Cardiologist, MD, PhD43Male4

28Consultant cardiologist, MD, DMSc62Male5

2Cardiologist, MD, PhD44Male6

9Consultant cardiologist, MD, DMSc47Male7
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Table 2. Case overview with patient summary, current implantable cardioverter defibrillator transmission information, and prediction tool information.

Prediction toolCurrent ICDa transmissionPatient summaryCase
number

Alarm raised (predic-
tion outcome)

30-day

VTb/VFc risk
probability

Transmission summaryICD treat-
ment

Primary
episode
type

Transmission
type

Yes (true positive)58.63 VT/VF; 36 sensing

episodes; 217 VT-NSe
ATPdVT/VFAutomatedMale, age 63 years, ischemic

heart failure, left ventricular
assist device

1

No (true negative)14.41 VT/VF; 1 VT-NS; 20

min of AFf since the last
transmission

ShockVT/VFAutomatedFemale, age 67 years, dilated
cardiomyopathy

2

Yes (true positive)35.42 VT/VF; 4 VT-NSShockVT/VFAutomatedFemale, age 40 years, dilated
cardiomyopathy

3

No (true negative)1.212 hours of AF since the
last transmission

NoneAFPatient initiatedMale, age 61 years, ischemic
heart failure

4

No (true negative)7.814 hours of AF since the
last session; 26 VT-NS

NoneAFAutomatedMale, age 73 years, ischemic
heart failure

5

aICD: implantable cardioverter defibrillator.
bVT: ventricular tachycardia.
cVF: ventricular fibrillation.
dATP: antitachycardia pacing.
eVT-NS: nonsustained ventricular tachycardia.
fAF: atrial fibrillation.

Data Collection
A combined feasibility and qualitative interview study was
undertaken based on a retrospective case study design. The
primary aim of the study was to address the following 4 main
questions about the feasibility of the prediction tool using
quantitative measures: Does use of the tool lead to change in
clinical action? Does it support decision-making? Are
visualizing parameters useful? Can it reduce time spent? The
secondary aims were to understand the electrophysiologist’s
immediate reactions to using the prediction tool, including
qualifying the quantitative feasibility measures against
qualitative dimensions based on interviews. Electrophysiologists
were invited to conduct a “near-live” clinical simulation of
decision-making based on walkthroughs of the 5 patient cases
(Table 2) with and without the prediction tool. Two structured
questionnaires based on a 5-point Likert scale were designed
to capture electrophysiologists’ decisions on action without the
prediction tool (Multimedia Appendix 1) and their experiences
of the feasibility of the prediction tool (Multimedia Appendix
2). A semistructured interview guide was designed based on
the framework of Bowen et al for feasibility studies [62] to
cover open-ended questions about the electrophysiologists’
overall experiences of using the prediction tool. Ten questions
in the following 4 areas of inquiry were posed: acceptability,
demand, adoption, and implementation (Multimedia Appendix
3).

“Near-live” case walkthroughs were performed with inspiration
from Li et al [63] (Figure 1), and they were facilitated by the
authors SM, MKHH, and TOA. First, the electrophysiologist
was on-boarded with a presentation of the study objectives, the
intended use of the prediction tool, the algorithm development

(data set and ML model, as well as results), and the outline of
the feasibility and qualitative study processes, and time was
provided to resolve open questions. Second, the
electrophysiologist was provided with a patient case and asked
to do a walkthrough of the case material to reach a decision on
clinical action, similar to normal clinical practice, and was asked
to answer the first questionnaire and explain the reasoning
behind the decision on clinical action. Third, the
electrophysiologist received the prediction tool on paper and
was asked to answer the second questionnaire for evaluation of
the effects of the prediction tool and to share his/her immediate
reactions. Fourth, after ending all patient case walkthroughs,
the electrophysiologist was interviewed about his/her experience
of the feasibility of the prediction tool. The total time for
observations and interviews was 12.5 hours, with an average
of 1 hour 47 minutes per electrophysiologist. Case walkthroughs
and interviews were audio and video recorded, and sections
with electrophysiologists’ responses to the questionnaires and
the open-ended interview were transcribed verbatim.

Data Analysis
Data from electrophysiologists’ reactions to the interview study
were analyzed using an inductive qualitative approach based
on grounded theory [64]. A 2-step iterative coding process was
applied beginning with line-by-line coding to support initial
analytic decisions about the data. Action codes were developed
by using gerunds (a noun form of a verb) to make explicit what
electrophysiologists were doing during case walkthroughs and
what meaning they derived (eg, “being confirmed,” “building
trust,” and “using to prioritize”). This was done to preserve
focus on action and situated processes of electrophysiologists’
decision-making, and to turn thematic descriptions into
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analytical insights in later stages of the analysis. Focused coding
was carried out by iteratively sorting and synthesizing
line-by-line codes into themes and subthemes related to the
research questions and by constructing key insights. This process
allowed for comparing and turning frequently reappearing initial
codes across large amounts of data, and obtaining more general
and analytically incisive findings (eg, “predictions can serve as
a second opinion” and “decision-making workload is reduced
when trust in the prediction tool is established”). The entire
process was carried out iteratively in collaboration between SM
and TOA using the qualitative data analysis software NVivo
12 (QSR International).

Results

Feasibility of the Prediction Tool in Clinical Practice

Does the Prediction Tool Change Clinical Decisions?
Overall, the electrophysiologists did not change their decisions
on clinical action when presented with the 30-day VT/VF
arrhythmia prediction (Table 3). However, several
electrophysiologists found that the prediction tool was helpful
(Textbox 1, Quote 1) and increased their confidence in their
choice of clinical action, and that the predictions could help
prioritize patients (Textbox 1, Quote 2) and determine what
action to take in relation to the local circumstances at the clinic
(Textbox 1, Quote 3).

Table 3. Effect of the prediction tool on electrophysiologists’ decision-making.

Case 5
(N=7), n (%)

Case 4
(N=7), n (%)

Case 3
(N=7), n (%)

Case 2
(N=7), n (%)

Case 1
(N=7), n (%)

Total (N=35),
n (%)

Question and answer

Q1: The prediction tool made me change my decision
on clinical action

0 (0)0 (0)0 (0)0 (0)1 (14)1 (3)Yes

7 (100)7 (100)7 (100)7 (100)6 (86)34 (97)No

Q1a: I will contact the patient

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Strongly disagree/disagree

0 (0)0 (0)0 (0)0 (0)0 (0)0 (0)Neither agree nor disagree

7 (100)7 (100)7 (100)7 (100)7 (100)35 (100)Agree/strongly agree

Q1b: I will book a procedure or reschedule an existing
procedure

1 (14)0 (0)1 (14)1 (14)0 (0)3 (9)Strongly disagree/disagree

1 (14)4 (57)0 (0)0 (0)1 (14)6 (17)Neither agree nor disagree

5 (71)3 (43)6 (86)6 (86)6 (86)26 (74)Agree/strongly agree

Q1c: I will do something else

4 (57)2 (29)5 (71)3 (43)5 (71)19 (54)Strongly disagree/disagree

0 (0)2 (29)1 (14)1 (14)1 (14)5 (14)Neither agree nor disagree

3 (43)3 (43)1 (14)3 (43)1 (14)11 (31)Agree/strongly agree

Q2: The prediction tool supported my decision-making

2 (29)3 (43)0 (0)1 (14)2 (29)8 (23)Strongly disagree/disagree

1 (14)1 (14)1 (14)0 (0)1 (14)4 (11)Neither agree nor disagree

4 (57)3 (43)6 (86)6 (86)4 (57)23 (66)Agree/strongly agree

Q3: The prediction tool’s visualization of parameters
supported my decision making

2 (29)3 (43)2 (29)1 (14)3 (43)11 (31)Strongly disagree/disagree

1 (14)1 (14)0 (0)0 (0)1 (14)3 (9)Neither agree nor disagree

4 (57)3 (43)5 (71)6 (86)3 (43)21 (60)Agree/strongly agree

Q4: The prediction tool can help me reach a decision
faster

3 (43)2 (29)2 (29)2 (29)4 (57)13 (37)Strongly disagree/disagree

0 (0)3 (43)0 (0)0 (0)1 (14)4 (11)Neither agree nor disagree

4 (57)2 (29)5 (71)5 (71)2 (29)18 (51)Agree/strongly agree
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Textbox 1. Themes, insights, and illustrative quotes describing the feasibility of the prediction tool.

Taking Action

Insights: The prediction tool led to no change in clinical action; the prediction tool can increase confidence in clinical action; the prediction tool can
help prioritize clinical action and patients; and being confirmed supports decision-making.

• Quote 1: Well, it hasn’t changed my current decision, but the basis is much better, and I can easily see that it has helped me. [Case 3,
Electrophysiologist #7]

• Quote 2: If you are in a busy situation where many transmissions have arrived and the technician and I have to maneuver and prioritize, there
is no doubt that we will concentrate on those with high-risk predictions. [Electrophysiologist #5]

• Quote 3: This [tool prediction] is something that might make me react a little more aggressively. […] Now I've been told that he's actually more
likely to get an episode within the next month than he's not getting an episode […] if our program is fully booked, both today and tomorrow, and
the day after tomorrow, but on Friday we have a time. Then I kind of have to make a trade off if I really want to spare him a shock. Which may
turn into a lot of shocks. [Case 1, Electrophysiologist #2]

Decision-Making

Insights: The prediction tool predictions served as a second opinion; the prediction tool supported gathering of thoughts; the overall presentation of
the prediction tool needs to be easily translatable to clinical relevance; and being confirmed supports decision-making.

• Quote 4: So, I agree with the conclusion, it was also my feeling that I would be a little worried about this patient. [Case 3, Electrophysiologist
#6]

• Quote 5: But then if it is you now have to convince some [other electrophysiologists] that they should ablate her, then instead of saying that I
think so, you can argue that the algorithm thinks so too. So, in that way you can say that you can get an extra view of it. [Case 3, Electrophysiologist
#3]

• Quote 6: In that way, the algorithm can be a support because it helps to gather thoughts about things that play a role in whether a person gets
a new arrhythmia. [Case 3, Electrophysiologist #5]

• Quote 7: Yes, I think again that if you present 58.6% then it expresses an accuracy that you may have difficulty navigating with. I know it from
other areas in the medical world, the thing about expressing something with a decimal number, it expresses an accuracy for which there may be
no evidence at all […] I have a hard time relating to the number […] it’s problematic to translate that into something clinically relevant. [Case
1, Electrophysiologist #5]

• Quote 8: I agree with what the alarm tells me, but I don’t think it has helped me very much right here. [Case 5, Electrophysiologist #5]

Visualization

Insights: The prediction tool should provide actionable parameters; showing parameters enables confirmation and agreement; showing parameters
enables in-situ validation of algorithmic inputs and the prediction tool result; the prediction tool performs only as good as the data it bases its predictions
on; transparency about the algorithmic data input helped raise confidence and trust; and showing important parameters is more important than showing
the output probability.

• Quote 9: To list what counts for and what counts against, makes really good sense. That’s also how it works in my head. [Case 3, Electrophysiologist
#7]

• Quote 10: I think it's super good, I actually think it's really pedagogical, I like it. Because, in reality this is how it confirms the result. It’s basically
the same empirical data that you have in your mind: You say “okay, is this a case where we have to do something?” It sums up some assumptions
that you have made yourself, and in that way, I actually think you are confirmed more than if you have a green or red light. [Electrophysiologist
#4]

• Quote 11: It's very nice to see that the algorithm reacts on the same parameters that I've discovered myself ... So it's nice to see that I agree with
it. You could say that it’s supporting and it's safe to know, that it also says there was something here. [Case 3, Electrophysiologist #1]

• Quote 12: What's happening here is that the ICD detects that the patient has VT, and then the prediction tool bases it’s predictions on that. But
it’s not entirely correct, because the device has recently been re-programmed to sense everything. [Case 1, Electrophysiologist #6]

• Quote 13: This case has nothing to do with risk of VT/VF [...] it's the second thing I look at. No, here I won’t use it [the prediction tool]. [Case
4, Electrophysiologist #1]

 

Time Saving

Insights: The prediction tool can speed up decision-making when trust is established; the prediction tool can reduce workload when trust is established;
the prediction tool can reduce information search time when no or low risk is predicted; the prediction tool can substitute patient input; and showing
important parameters enables work redelegation to technicians and nurses.

• Quote 14: It will give me a much better basis for decision making and I actually think it will save me a lot of time. Just like with all other new
technology based on machine learning: the first 2 months I sit and read through to see what I have, but in month 3, I will look at the output alone.
Because then I trust that it has pulled out what is appropriate, and then it starts saving me all the work I did in the beginning. But for everyone,
it is that there is a phase for you personally to find out if this brings you further. […] I really think I would have come to the decision faster if I
had seen this first. [Case 3, Electrophysiologist #7]
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Quote 15: I might reach a decision faster with this system if I can’t get a hold of the patient i.e., if the patient does not pick up the phone. Then
it could well be that I look at the alarm and say “well, yes okay there is low risk.” [Case 2, Electrophysiologist #6]

•

• Quote 16: You could make a scenario where the technician first looks at it [the prediction tool] and says ... okay there are those parameters and
there is electrical storm, so we call in the patient and the doctor does not have to look at the transmission. That would support our workflow.
[Case 1, Electrophysiologist #4]

In Which Cases Does the Prediction Tool Support
Clinical Decision-Making?
In 23 (66%) of the case walkthroughs, the electrophysiologists
agreed that the prediction tool supported their decision-making,
whereas in 8 (23%) of the walkthroughs they disagreed. Finding
the prediction tool supporting was particularly pertinent in both
patient cases 2 and 3, where 6 (86%) of the electrophysiologists
agreed, and the prediction tool was found to assist
decision-making by confirming the electrophysiologists’clinical
evaluations and expectations of an increasing risk of VF/VT
(Textbox 1, Quote 4). On the contrary, when the
electrophysiologists were focused on predicting arrhythmias
other than VT/VF, the prediction tool was deemed less useful,
and answers were more heterogenous (Case 4 and Case 5). Some
electrophysiologists said that the predictions served as a second
opinion (Textbox 1, Quote 5) and that the prediction tool was
helpful for collecting arguments that supported the
electrophysiologists when trying to “gather thoughts” about
potential VT/VF occurrences (Textbox 1, Quote 6).
Nevertheless, some electrophysiologists found that showing the
probability score as a percentage with decimals created
uncertainty, and the naming of parameters was sometimes found
difficult to interpret (Textbox 1, Quote 7).

Is Visualization of Important Parameters Useful?
The prediction tool’s visualization of the most important
parameters in the prediction of increased or decreased
probability of VT/VF arrhythmia was found useful when the
electrophysiologists agreed with the parameters presented. In
patient cases 2 and 3, 6 (86%) and 5 (71%) of the
electrophysiologists agreed that showing important parameters
supported their decision-making. However, when the parameters
represented poor data quality (Textbox 1, Quote 12), agreement
was lower, for example, in patient Case 1 (43% agreed, 43%
disagreed), or when the electrophysiologists were focused on
predicting arrhythmias (Case 4 and Case 5) other than what the
prediction tool was designed for (Textbox 1, Quote 13).

In general, presentation of important parameters provided
explainability and supported decision-making by resembling
the clinical interpretation process of what counts for or against
the occurrence of VT/VF (Textbox 1, Quote 9). Several
electrophysiologists found that visualization of important
parameters created more confidence in the prediction tool than
the probability score alone as the tool summed up many of the
same assumptions that the electrophysiologists already had
(Textbox 1, Quote 10). Listing the algorithm’s important
parameters also enabled electrophysiologists to do in-situ
validations of the prediction tool’s predictions by interpreting
the data against the patient case (Textbox 1, Quote 11).
However, in some cases, the electrophysiologists found that the
parameters were based on wrong data from the ICD

transmission. In those cases, it enabled electrophysiologists to
check if the prediction tool based its predictions on wrong or
poor data quality and to decide whether to trust the predictions
or not (Textbox 1, Quote 12).

Does the Prediction Tool Reduce Time for
Decision-Making?
The electrophysiologists found that the prediction tool could
enable a reduction in time for decision-making in cases where
they trusted the predictions. Moreover, 5 (71%) of the
electrophysiologists agreed that the prediction tool can help
reach a decision faster (Case 2 and Case 3). However, agreement
was lower (29% in Case 1 and 57% in Case 5) when predictions
were found to be uncertain or less useful for handling patients.

Several of the electrophysiologists expressed that once they
become familiar with the system, they expect the AI tool will
speed up decision-making and reduce the diagnostic workload.
This indicates that establishing trust in AI predictions is
essential. One of the electrophysiologists explained how time
can be saved when personal trust in the prediction tool is
developed (Textbox 1, Quote 14).

Across all cases, several electrophysiologists found that the
probability score and the presentation of important parameters
can reduce information search time. Typically,
electrophysiologists must retrieve valuable information by
clicking through multiple webpages in the ICD manufacturer’s
web-based system, which the prediction tool summarizes in a
table. Some electrophysiologists also speculated that the tool
could support decision-making when patient input is
inaccessible, such as when a patient does not answer the phone
(Textbox 1, Quote 15). Other electrophysiologists considered
that the tool can support workflow and reduce unnecessary time
consumption for electrophysiologists by delegating
decision-making to the technician (Textbox 1, Quote 16).

Clinician Preimplementation Perspectives of the
Prediction Tool: Acceptability, Adoption, Demand,
and Implementation

Acceptability
Acceptability of the prediction tool was high when patient cases
concerned VT/VF, as the risk predictions were found to be
relevant. However, several electrophysiologists had expectations
that the prediction tool would bring new and groundbreaking
insights (Textbox 2, Quote 1) to support or challenge their
decisions on which action to take. In cases where the
task-technology fit was lower (Case 1, Case 4, and Case 5),
acceptability was also lower (Textbox 2, Quote 2). For some
of the electrophysiologists, the prediction tool was therefore
considered “nice to have” rather than “need to have” (Textbox
2, Quote 3), while most of the electrophysiologists recognized
the potential of the prediction tool. Some of the
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electrophysiologists considered the tool useful for standardizing
decision-making across the electrophysiologist team by avoiding
individual influences from recent experiences and thus achieving
harmonization of individual treatment (Textbox 2, Quote 4).

Adoption
There was consensus that high precision is important for
prediction tool adoption to happen. Several of the
electrophysiologists emphasized that the positive or negative
predictive value should be as unambiguous as possible, showing
either low or high risk when the alarm is raised (Textbox 2,
Quote 5). Other electrophysiologists emphasized that false
positives or negatives hinder adoption, which they explained
to be the case for the adoption of OptiVol (an early warning
alarm for fluid-related decompensation). Here, the
electrophysiologist team decided not to use it due to too many
false positives (Textbox 2, Quote 6). Several electrophysiologists
explained that acceptance and clinical adoption are collectively
decided based on team experiences from real-world use
(Textbox 2, Quote 7) and from experiencing that the prediction
tool actually confirms decisions in everyday clinical practice
(Textbox 2, Quote 8). Adoption can also be achieved through
building trust in the tool by means of validation studies.
Participants explained that trust is a precondition for adoption,
which can be achieved by documenting effects in a randomized
clinical trial and through algorithm validation in peer-reviewed
journals (Textbox 2, Quote 9).

Demand
Several of the electrophysiologists emphasized that there is a
high demand for workflow support in remote monitoring of
cardiac device patients. They found the prediction tool useful
for supporting more efficient prioritization and identification
of important patient cases (Textbox 2, Quote 10). Others

described the demand for screening support among the
increasing number of nonspecialized hospitals where fewer
electrophysiologists are at work. For example, the prediction
tool could support technicians doing the initial prioritization
work more effectively and efficiently; the prediction tool could
decrease electrophysiologists’ patient information search time
when handed over from technicians; and the prediction tool
could function as “data help” by enabling junior doctors to get
a form of senior help by consulting the tool (Textbox 2, Quote
11).

Implementation
To ensure successful implementation, some electrophysiologists
described how remote monitoring clinics may want to be able
to adjust the threshold of the prediction tool to fit local
workflows and prioritization rules. For example, technicians
and electrophysiologists should be able to configure the
prediction tool and decide on related actions, such as “no need
to take action” or “need to contact the patient.” Relatedly,
several electrophysiologists explained that indications of
low-risk patients are especially useful in supporting clinicians
in handling low-risk transmissions (Textbox 2, Quote 12).
Moreover, the electrophysiologists explained that the intention
of using the prediction tool is dependent on easy access, as well
as how well it presents data and alleviates the need for clicking
through several web pages in remote monitoring systems
(Textbox 2, Quote 13). Some electrophysiologists added that it
is practical that the algorithm uses data already available in
remote monitoring systems, which are used daily for
decision-making in the clinic. Knowing the data creates
transparency and enables in-situ validation of the correctness
of the probability score, thereby increasing the likelihood for
success with implementation of the prediction tool (Textbox 2,
Quote 14).
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Textbox 2. Themes, insights, and illustrative quotes describing clinicians’ preimplementation perspectives of the prediction tool.

Acceptability

Insights: Expectations that the prediction tool would bring new and more groundbreaking insights; overall usefulness of the prediction tool is “nice
to have;” clear purpose is decisive for acceptability; intension of use is tied to the prediction tool’s task-technology fit; harmonizing individual treatment;
and avoiding being influenced by recent experiences and reducing individual bias.

• Quote 1: […] it confirms the assessment you make, and that's fine, but it's not something groundbreaking, and that's okay too. [Interview,
Electrophysiologist #5]

• Quote 2: […] I'm a little disappointed with the alarm, because for the cases I have looked at, the alarm has not given me much. […] if you had
some cases with some ‘meat’ on such as a couple of treatment requiring VTs, I actually do think that getting a number, a risk score, will enable
to better estimating the problem. I think that can be valuable […] I just think the cases were wrong. If you want to show that this algorithm gives
value and then bring 2 cases with AF problems, which the algorithm does not handle, then that’s not optimal. [Interview, Electrophysiologist
#2]

• Quote 3: It's always nice when something is supportive, I would say, but isn't it a “nice to have” and not a “need to have”? [Interview,
Electrophysiologist #4]

• Quote 4: 20 years of experience or not. Perhaps, the advantage of the algorithm is that it is not influenced by what the individual clinician has
experienced within the last month, and in this way helping to make more uniform conclusions. [Interview, Electrophysiologist #5]

Adoption

Insights: High precision is important; false positives hinder adoption; using the prediction tool and getting confirmation in real life creates trust and
enables adoption; the clinical team needs to decide on use; a randomized clinical trial is a precondition for acceptability; and algorithm validation
supports trust.

• Quote 5: If you want to come out with this, it must be something with a positive predictive value that is really good, so that you don’t get a lot
of nonsense that you can’t use. The alarm should only be raised when there really is something. [Interview, Electrophysiologist #3]

• Quote 6: It needs to be easily accessible and we [team of electrophysiologists] have to agree that we trust it [the prediction tool]. We just have
to say that yes it looks right. For example, the Optivol alarm had too many false positives, which gave a lot of extra work and everything, and
we actually chose not to use it because there were too many sources of error, and you only really discover that when you work with it [new
algorithms]. [Interview, Electrophysiologist #1]

• Quote 7: I would say that it [prediction tool] would be an instrument that would have to be accepted in our group and then you would find it
valuable when we all agree to take the red alarms first, and in that way use it to prioritize a bit. [Interview, Electrophysiologist #5]

• Quote 8: I just think I should see that it confirms our decisions in enough cases - then I would feel comfortable about colleagues leaning on it
[…] There is something about trying it out, you know how it is. [Interview, Electrophysiologist #4]

• Quote 9: Published studies of the algorithm would increase confidence yes, because then you know that someone with an understanding of
making these models have said that it looks okay; someone externally who have validated it. [Electrophysiologist #1]

Demand

Insights: Supporting better workflows; demand for prioritization and identification of important patient cases; increasing demand for screening tools
in nonspecialist hospitals; demand for decreasing electrophysiologist’s information search time; supporting nurses and technicians to do prioritization
work; and “data help” that enables junior doctors to get senior help.

• Quote 10: When transmissions come in, it’s almost an unsorted list of transmissions […] The list is unprocessed, so with the algorithm it takes
it a step further by nuancing what comes into CareLink [Medtronic’s remote monitoring dashboard] with some semi-quantitative markings. And,
if it is reliable, then it would be valuable. Partly because you don’t overlook anything, and partly because you are confirmed that we must take
these patients first, because we have experience that there can be trouble here. [Interview, Electrophysiologist #5]

• Quote 11: You could say that in this way, the young doctor can do without getting senior help by actually getting data help. [Interview,
Electrophysiologist #2]

 

Implementation

Insights: Demand for adjusting the threshold to local prioritization rules; clinics need to be able to configure the cutoff and threshold; making the
prediction tool easily accessible and integrated in the list of transmissions supports the workflow; intention of use is dependent on easy access; and it
is practical that the algorithm uses data that are already familiar to the clinicians.

• Quote 12: Electrophysiologists don’t bother to hear about it if it is below a certain percentage […]. We have adopted some rules, e.g. if you
have a patient and she has got a shock, and gets rare therapies and it goes over, then we don’t need to hear about it because we think there is
not a big risk. You might well imagine that introducing this alarm will support handling low-risk transmissions. [Interview, Electrophysiologist
#3]

• Quote 13: If it’s easily presented and you don’t have to go in and look through 4 pages and such and if it was on the front page and brought up
“number of episodes” and information like that - if you could easily retrieve the information [from the prediction tool] or if it was printed on
the list of transmissions we are working on, then it would also be a great help. [Interview, Electrophysiologist #1]
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Quote 14: What one would emphasize, is that the algorithm uses the same data that the clinician uses i.e. it’s the same data, just integrated
according to a formula that clinicians do not currently have available. [Interview, Electrophysiologist #5]

•

Discussion

Tackling the Sociotechnical Challenges of ML-Based
Tools in Health Care
In bridging the sociotechnical gap between the development of
ML-based tools and clinical implementation, this study explored
the feasibility and clinical perspectives of using a prediction
tool for improved workflows in ICD remote monitoring. We
found that the feasibility of the ML-based tool is promising
when the intended use of the tool is aligned with expectations,
that is, by providing support for decision-making, visualizing
useful information, and reducing time spent. The results also
show that an actionable prediction tool is one that presents the
reason for why the algorithm deemed as it did, such as in this
study, by highlighting important data to be used for clinical
evaluation and enabling clinicians to assess the algorithm’s
outcome against their own evaluation [31,33].

However, the current prediction tool did not lead to change in
clinical action, suggesting that ML and explainability techniques
do not outperform specialized and experienced
electrophysiologist evaluations, but at best confirm and support
the interpretation of complex ICD device information along
with a promise for a less time-consuming clinical workflow.

The contribution of this paper lies in the implications of the
qualitative results suggesting that clinical end-users, clinical
contexts, and workflows must be included throughout an overall
iterative approach to design, development, and implementation.
In the following sections, we will discuss the qualitative results
concerning the sociotechnical challenges and implementation
of ML-based tools for clinical decision support.

Expectations Need to Align With the Intended Use of
AI
In cases where misalignment emerged between the
electrophysiologists’ expectations and intended use, the
prediction tool was considered less useful and at best “nice to
have” for clinical decision-making. For example, in cases where
the ICD transmissions revolved around other types of
arrhythmias than what the prediction tool was designed for and
in cases where the electrophysiologists expected that the
prediction tool should be capable of outperforming their own
evaluation, disappointment was raised about the performance
of the underlying AI algorithm. This aligns with recent studies
that reported on physicians’ high expectations and attitudes
toward medical AI [22,23,51,65]. The challenge of managing
expectations has been addressed by a growing number of studies
aimed at providing an explanation of algorithmic decisions at
the time of inference [36] and by developing user interfaces
with expectation adjustment techniques [66]. Recently,
researchers focused on the early human-AI onboarding process
of pathologists and found that presenting a global view of a
prediction tool and its capabilities, limitations, and biases is key
to the formation of initial impressions and appropriate mental
models [67]. This suggests that the development of so-called

explainability in the user interface is important, but
communicating the intended use of the prediction tool is
imperative for acceptance in the clinic. To achieve alignment
of expectations, training programs for clinicians are critical
when implementing medical AI tools.

Trust Emerges From Real-World Use
Trust is another key factor for user acceptance and adoption of
AI technologies. Trust is typically considered an issue in
creating transparent and understandable algorithmic behavior,
as opposed to seeing the prediction tool as a black box
[55,68,69]. Extensive research on explainable AI and various
approaches to achieve transparency have been suggested [11],
yet experimental studies on whether these approaches achieve
their intended effects in the real world are only just starting to
emerge [38,39,69,70]. In this study, the electrophysiologists
requested large-scale algorithm validation and prospective
evaluations from clinical trials. However, an important
observation was that trust in the prediction tool may only emerge
from continuous use of the tool and from experiencing
confirmation on individual evaluations in collaboration with
the tool. There was general agreement among the
electrophysiologists that visualization of the most important
predictive parameters helped raise confidence and trust over
time, and that adoption of the prediction tool would hinge on
the collective decision among the team of electrophysiologists.
Recent experimental studies have reported similar findings
[69,71] and have demonstrated that adding an AI prediction
tool to the clinical evaluation can increase clinician confidence
[24]. The implication of understanding trust as emerging from
real-world use is that when deploying medical AI in clinical
settings, trust needs to be built bottom-up through weeks or
months of trialing the new tool for clinicians to experience
convincing reassurance. Therefore, initial implementation
processes may benefit from simultaneous calibration and
adaption of the tool to establish a human-AI partnership, and
allowing the local team of clinicians to decide collectively how
they choose to trust and use the tool in the clinic.

Accuracy is Dependent on Workflow and Context
While AI algorithms have been validated and have been shown
to have similar or higher accuracy than humans, recent studies
of AI deployment in clinical settings report that professional
autonomy, workflow, and local sociotechnical factors have
impacts on how accuracy is perceived and used in clinical
practice [24,43,45-47,50-54]. Bruun et al [24] found that overall
performance was positively impacted among clinicians using
an AI-prediction tool for assessing progression in early stage
dementia and that clinicians’ professional autonomy impacts
the use of medical AI in situated clinical practice. Additionally,
the study by Beede et al [29] of a ML-based (deep learning)
system used in clinics for the detection of diabetic eye disease
indicated that several socioenvironmental factors, such as busy
screening procedures, poor lighting conditions, and
consideration of patient burden, have impacts on how AI
accuracy is perceived in clinical screening practices. Similarly,
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we found that high accuracy becomes relative to the
electrophysiologist’s evaluation of available information, the
local circumstances, and the consequences that AI predictions
have for taking action. For example, several electrophysiologists
argued that AI prediction needs to be considered against
patient-reported symptoms and that a full patient schedule may
affect how the AI prediction is acted upon in practice. Moreover,
in several cases, the electrophysiologists found the visualization
of important parameters more useful than the prediction score
itself. This indicates that AI accuracy needs to be understood
as relational and dependent on available information and local
workflows, which supports the vision of establishing a
human-AI symbiosis that combines the predictive abilities of
both the clinician and the AI prediction algorithm [32,33].
Finally, the wish for better visualization of data parameters over
prediction accuracy indicates that the development of medical
AI assistants needs to be carried out as close as possible to
implementation in clinical practice with clinical end-users
through iterative approaches [37,42,72] that can bridge the “AI
chasm” [41] of scientifically sound algorithms and their use in
meaningful real-world clinical applications.

Limitations
The findings in this study are limited to the small number of
study participants and patient cases. One electrophysiologist
(PKJ) participated in co-design workshops, resulting in potential
positive bias. Patient cases were selected to represent diversity
in prediction capabilities, rather than the distribution in
clinical practice, which may weaken the generalizability of the
results. Only cases where the prediction tool provided
true-positive and true-negative prediction outcomes were used,
which means that the clinical feasibility of ML in cases with
false-positive and false-negative outcomes [73] have not been
explored. Future studies are needed to assess the implications
of false prediction outcomes, as well as conduct algorithmic
validation similar to recent related studies [14-21]. Limitations
also involve data availability, that is, the data set used may entail

algorithmic bias [13] and the study participants may have been
more positive toward innovative AI technology since all of the
study participants were from a tertiary university hospital and
constituted a rather homogenous group of highly specialized
physicians. The AI studied has limitations, because only the
random forest ML-based algorithm was evaluated with
electrophysiologists. These types of methods are commonly
used in medical applications [21,74,75] because of their high
classification accuracy and capabilities for handling data with
imbalanced classes [50] while providing easily accessible, if
limited, global intelligibility through the visualization and
ranking of parameter importance [55]. This work will benefit
from being validated in a large-scale multicenter study with
higher diversity in participating electrophysiologists and
workflows. It will be imperative to conduct prospective clinical
trials evaluating the algorithm against standard care with regard
to workload, cost-effectiveness, and hard clinical endpoints.

Conclusions
This study shows that a tool based on ML for the prediction of
VT/VF in remote monitoring of ICD patients has the potential
to support electrophysiologists’ decision-making. While the
prediction tool was regarded as “nice to have” rather than “need
to have” in its current form, the tool demonstrated potential for
supporting clinical decision-making, as it provided reassurance,
increased confidence, and indicated the potential for reducing
information search time, as well as enabled delegation of
decisions to nurses and technicians. The findings also indicate
that trust in the prediction tool, acceptable data quality, and
clearly defined intended use are decisive for end-user acceptance
and that adoption hinges on successful clinical implementation.
This suggests that clinical end-users’ sociotechnical contexts
and workflows need to be taken into consideration early on and
continuously throughout a participatory design process to
address the sociotechnical gap between the development and
implementation of medical AI in cardiac care.
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Questionnaire after the electrophysiologists have received the prediction tool results.
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Multimedia Appendix 3
The semistructured interview guide.
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