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Abstract

Background: User experience and engagement are critical elements of mental health apps’ abilities to support users. However,
work examining the relationships among user experience, engagement, and popularity has been limited. Understanding how user
experience relates to engagement with and popularity of mental health apps can demonstrate the relationship between subjective
and objective measures of app use. In turn, this may inform efforts to develop more effective and appealing mental health apps
and ensure that they reach wide audiences.

Objective: We aimed to examine the relationship among subjective measures of user experience, objective measures of popularity,
and engagement in mental health apps.

Methods: We conducted a preregistered secondary data analysis in a sample of 56 mental health apps. To measure user experience,
we used expert ratings on the Mobile App Rating Scale (MARS) and consumer ratings from the Apple App Store and Google
Play. To measure engagement, we acquired estimates of monthly active users (MAU) and user retention. To measure app popularity,
we used download count, total app revenue, and MAU again.

Results: MARS total score was moderately positively correlated with app-level revenue (Kendall rank [T]=0.30, P=.002), MAU
(T=0.39, P<.001), and downloads (T=0.41, P<.001). However, the MARS total score and each of its subscales (Engagement,
Functionality, Aesthetics, and Information) showed extremely small correlations with user retention 1, 7, and 30 days after
downloading. Furthermore, the total MARS score only correlated with app store rating at T=0.12, which, at P=.20, did not meet
our threshold for significance.

Conclusions: More popular mental health apps receive better ratings of user experience than less popular ones. However, user
experience does not predict sustained engagement with mental health apps. Thus, mental health app developers and evaluators
need to better understand user experience and engagement, as well as to define sustained engagement, what leads to it, and how
to create products that achieve it. This understanding might be supported by better collaboration between industry and academic
teams to advance a science of engagement.

(JMIR Hum Factors 2022;9(1):e30766) doi: 10.2196/30766
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Introduction

Background
An increasing number of mental health apps are available to
consumers, with estimates that 10,000 to 20,000 mental health
apps currently exist [1,2]. Evidence suggests that these apps
can help address various mental health concerns such as stress,
depression, and anxiety. Even unguided apps intended for
self-management can lead to reliable, albeit small, benefits [3],
particularly for people with lower symptom severity [4]. The
biggest challenge facing these apps, especially when provided
in unguided, direct-to-consumer models, is engagement.
Engagement with most mental health apps is
abysmal—estimates suggest that most publicly available mental
health apps for depression and anxiety have zero or near-zero
active users [5]. This study aims to better understand
engagement with mental health apps from the vantage points
of user experience and popularity.

Previous Work on Mental Health App Engagement
Previous research has examined mental health app engagement
in multiple ways [6]. A scoping review of concepts and
components of engagement used in the digital health literature
emphasized that engagement is a multifaceted concept with
behavioral, cognitive, and affective components [7]. Although
self-report engagement measures aim to capture some of these
components [8], in this paper we focus on the behavioral
component using analytic data, which tracks users’actual usage
of apps (eg, number of downloads or average time per use).
However, analytic data can also be used to determine different
conceptualizations of engagement, and we consider some of
these approaches below.

One approach to studying engagement is to quantify user
retention: the proportion of users who continue to use an app
over a certain period. Estimates suggest that approximately 4%
of users who download a mental health app continue using it
after 15 days, and 3% continue after 30 days [9]. Early efforts
have also identified some factors that predict retention, such as
therapeutic persuasiveness and therapeutic alliance [10].
Retention is a useful metric of engagement because it considers
sustained use rather than only initial adoption (downloading an
app).

Another perspective on engagement focuses on monthly active
users (MAU): the number of people who use an app in a given
month. Most mental health apps have nearly no active users,
while a few apps have millions of active users [5]. This trend
of vastly unequal distributions of users across similar apps seems
to be true not only for mental health apps but also for apps
focused on physical fitness and mood-tracking [11]. Given these
extreme differences in MAU, efforts to understand how highly
popular apps differ from unpopular apps have been a priority.
Importantly, an app’s MAU reflects two distinct components:
(1) the number of people who downloaded the app (which
reflects an app’s popularity and marketing success) and (2)
retention (which may reflect content and features within the
app). Because retention data are often difficult to obtain,
investigators recently proposed an alternative “stickiness”
metric, defined as the number of monthly active users per

normalized total downloads [12]. Interestingly, some of the
most downloaded apps do not appear to be particularly sticky,
and some of the stickiest apps are not the most downloaded
[12].

There have also been efforts to improve engagement with digital
mental health interventions. While this work is in its early
stages, some promising strategies include incorporating
human-centered design principles [13], branding digital mental
health interventions in ways that appeal to specific subgroups
of users [14], sending reminders and “digital triggers” [15], and
incorporating human support [16].

In summary, current research has examined engagement from
multiple perspectives, several efforts to improve engagement
are underway, and research on engagement is still in its infancy.
One important next step involves understanding why some apps
are more engaging or more popular than others. Such work
could inform efforts to increase engagement by highlighting
specific content, features, characteristics, or development
strategies that may contribute to engagement.

Characteristics of User Experience
User experience refers to the holistic experience of using a
product such as a mobile app. It is shaped by an app’s content,
its functionality, and its look and feel. Similar to
conceptualizations of engagement, it also encompasses affective,
behavioral, and cognitive reactions and includes emotional,
hedonic, and aesthetic variables [17]. User experience can be
understood through various methods including expert or
heuristic evaluations, user interviews, and user reviews [18].
As user experience is a multifaceted and complex concept,
different methods of understanding user experience have relative
strengths and weaknesses.

For mobile mental health apps, the most widely used measure
of user experience is the mobile app rating scale (MARS) [19].
It has been used in various evaluations of health apps, including
mindfulness apps [20] and pain-management apps [21]. The
MARS evaluates mobile health app quality along dimensions
of engagement, functionality, aesthetics, and information quality.
The engagement scale assesses how interactive and interesting
the app is, the functionality scale assesses the app’s functioning
and ease of use, the aesthetics scale assesses overall visual
appeal and stylistic consistency, and the information subscale
assesses the quality of the content. Averaged together, the 4
subscales form the MARS total score, which measures overall
app quality. Typically, the MARS is used by a trained evaluator
with expertise in some facet of mobile health apps such as
technical or clinical expertise or lived experience with the health
condition. In this way, the MARS can be thought of as a form
of heuristic evaluation where experts score various components
of the app using validated metrics. The MARS’s construct
validity was established by confirming its factor structure, and
its concurrent validity was established by relating it to another
app quality assessment tool [22]; however, more research is
needed to determine the MARS’s other psychometric properties,
such as its predictive validity.

Another way to understand the user experience of mental health
apps is to ask consumers, either directly through user experience
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interviews or indirectly by analyzing consumer reviews posted
to app stores [23]. Interviews can provide in-depth information
but are labor-intensive and may not accurately reflect user
behavior. App store reviews are easily accessible and plentiful
for popular apps, but review-writers’ perspectives may not be
representative of most of an app’s users. Studies that directly
ask consumers about their experiences and those that leverage
app store reviews can provide converging evidence of
characteristics that are important for consumers such as a
positive framing or simplicity [24,25]. A review of studies of
mental health app user experience identified six themes among
consumers’ perceptions of apps: helpfulness, enhancements,
technical issues, ease of use, satisfaction, and perceived issues
[26]. Additionally, a study examining over 13,000 reviews of
106 mental health apps noted that user interface and
user-friendliness were two of the most common aspects
commented on by users and that poor usability was often noted
as a reason for abandoning apps [23]. Although these themes
align with some aspects of the MARS subscales, such as
functionality, they also tend to correspond to more general
perceptions of quality or specific improvements or deficits.

To summarize, methods for evaluating user experience for
mobile health apps have been refined over the past years and
produced useful insights into consumer preferences.
Nonetheless, better understanding user experiences is critical
because, ultimately, mental health apps are beneficial only
insofar as users meaningfully engage with them.

This Study
This study aimed to identify associations between mental health
app user experience and metrics of app popularity and
engagement. We first hypothesized that more popular apps, in
terms of app-level revenue, monthly active users, and
downloads, would have higher user experience ratings. Second,
we hypothesized that apps’ levels of engagement, functionality,
and aesthetic appeal would predict user retention more strongly
than their informational quality. Third, we hypothesized that
app store ratings would be correlated with user experience
ratings.

Methods

Design and Material
We obtained MARS scores from One Mind PsyberGuide, a
nonprofit organization that provides structured reviews of mental
health apps [27]. One Mind PsyberGuide reviews mental health
apps on multiple metrics including user experience as defined
by the MARS. Three reviewers with training on MARS
administration—2 PhD-level reviewers, each with extensive
experience in user experience and mental health app reviews,
and 1 individual with lived experience of mental health
issues—completed each MARS review. These 3 ratings were
averaged to produce the MARS scores provided on One Mind
PsyberGuide and used in our analyses. Overall, we had access
to MARS ratings from 91 mental health apps, including total
score and all 4 MARS subscales. The ratings were completed
between March 2020 and December 2020.

We obtained analytic data from Apptopia, a company that
aggregates data on various metrics of mobile app usage and
popularity [28]. This analytic data included app-level data on
MAU (ie, the number of users who opened the app at least once
in the past 30 days), daily revenue (in US$), daily downloads,
app store rating (1-5, ratings were obtained from Google Play
and Apple App Store and the mean across stores was used when
data from both stores were available), and user retention
variables corresponding to 1, 2, 3, 4, 5, 6, 7, 14, and 30 days
after downloading the app (with values 0-100 corresponding to
the percentage of people who opened the app n days after
downloading it). The MAU, daily revenue, and daily downloads
variables had daily values for each day between February 8,
2020, and February 8, 2021, which is a 1-year period that
overlaps with that of the MARS ratings. We transformed these
daily values to a single value per app, computed as the variable’s
mean across all of the days of the month in which that app’s
MARS review was completed. We performed all analyses using
these month-averaged data, rather than the daily values. Because
mean values as a measure of central tendency are susceptible
to influence by outliers or skewness of the distribution, we also
computed the variable’s median values across all of the days of
the month and report all analyses using these month median
data in Multimedia Appendix 1. The app store rating variable
and each retention variable had only one value in our data set.
For app store rating, the value corresponded to the average of
all app store ratings in the 365 days preceding February 8, 2021.
Each retention variable’s value reflected the average of retention
values across every day in January 2021.

Exclusion Criteria
We chose to exclude several apps from analyses owing to
missing data. First, we excluded apps that lacked Apptopia data
for at least 1 day in the month as missing data may have created
a bias toward inflated monthly average values. Among the 91
apps with MARS rating data provided by One Mind
PsyberGuide, 56 had Apptopia data for every day of the month
that the MARS review was completed, and 54 of those 56 had
data for user retention and app store ratings. In total, 18 of the
91 apps with MARS rating data had no Apptopia data
whatsoever. Thus, for some analyses we include 56 apps and
for others we include 54 apps.

Data Availability
Our hypotheses and analysis plan were preregistered and are
available on the internet, as well as the data sets we used for
analyses (in addition to data on additional variables for each
app) [29]. We have also provided the output from the main and
sensitivity analyses in Multimedia Appendix 1. Owing to
Apptopia’s data-sharing policy, we have provided the Apptopia
data separately with the app names deleted and the apps
presented in random order.

Analyses
Statistical analyses were performed using the stats package in
R (R Core Team, 2020). For all analyses, statistical significance
was set at a preregistered threshold P<.05; however, we have
reported exact P values unless they were <.001. Data
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manipulation and figure creation were conducted in R using the
tidyverse family of packages [30] and sjPlot [31].

For our first hypothesis—that more popular apps, in terms of
app-level revenue, MAU, and downloads, would have higher
MARS scores—we determined the Kendall rank (T) correlation
coefficients (3 in total) between the MARS total score and
revenue, MAU, and downloads. We used the Kendall rank
correlation coefficient rather than the Pearson correlation
coefficient because rank-order correlation is not overly impacted
by the presence of extreme outliers (and we knew there were
several such outliers in the revenue, MAU, and downloads
variables in our data set) and is therefore more consistent with
our research question. Nonetheless, this skewness remains
important to consider when interpreting our results.

For our second hypothesis—that the MARS engagement,
functionality, and aesthetic subscales would predict user
retention more strongly than the information subscale—we
chose to calculate Kendall rank correlation coefficients (12 in
total) between each MARS subscale of interest (Engagement,

Functionality, Aesthetics, and Information) and user retention,
as measured by the percentage of users who downloaded the
app who opened it 1, 7, and 30 days after download.

For our third hypothesis—that app store ratings would be
correlated with the MARS total score—we chose to calculate
the Kendall rank correlation coefficient between the MARS
total score and app store rating.

Results

Results Overview
Figure 1 shows variable distributions and mean values, and
Figure 2 illustrates Kendall rank correlation coefficients across
variables of interest. MARS total scores tended to be high (mean
3.85, SD 0.65), as did the MARS subscales for engagement
(mean 3.68, SD 0.76), functionality (mean 4.16, SD 0.61),
aesthetics (mean 3.84, SD 0.84), and information (mean 3.72,
SD 0.69). App store ratings were also high (mean 4.39, SD
0.59). Revenue, MAU, and downloads were highly skewed
owing to a few extremely popular outliers.
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Figure 1. Frequency distributions for all variables (n=54 or n=56) included in our analyses. Variable mean values are shown with gold vertical lines.
MARS: Mobile App Rating Scale.
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Figure 2. Kendall rank correlation coefficients between all variables (n=54 or n=56). Pairwise deletion was used to deal with missing data. *P<.05.
**P<.01. ***P<.001. MARS: Mobile App Rating Scale.

Distribution of App Usage
The distribution of monthly active users among the 56 mental
health apps we examined was highly skewed (mean 578,645,
SD 1,856,468, median 48,676, range 0-12,373,122). Among all
the apps in our data set, the 3 most popular apps accounted for
66.6% of MAUs, and the 10 most popular apps accounted for
90% of MAUs [11]. As noted in the analyses section, we account
for these distributions’ skewness by using Kendall rank
correlations in our analyses.

Associations Between MARS Scores and App
Popularity, User Retention, and App Store Ratings
In our sample of 56 mental health apps, Kendall rank correlation
analyses revealed that the MARS total score was moderately

positively correlated with app-level revenue (T=0.30, P=.002),
MAU (T=0.39, P<.001), and downloads (T=0.41, P<.001;
Figure 3). Conversely, in our sample of 54 mental health apps,
the MARS total score and its subscales (ie, Engagement,
Functionality, Aesthetics, and Information) showed minor
associations with user retention 1, 7, and 30 days after
downloading (T=–0.10 to 0.17) and none of these associations
met our threshold for significance (P=.93 to .07). Lastly, the
MARS total score was also extremely weakly correlated with
app store ratings (T=0.12), which did not meet our threshold
for significance (P=.20).
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Figure 3. The association between Mobile App Rating Scale (MARS) Mean scores and log-adjusted downloads for mobile mental health apps, Kendall
T=0.41, P<.001, n=56.

Sensitivity Analysis
The daily values that were averaged to form the monthly average
values for the MAU, daily revenue, and daily downloads
variables were not normally distributed for many apps, although
they also did not have extreme outliers. As sensitivity analysis,
we reran the analyses using the median of the MAU, daily
revenue, and daily downloads variables instead of the mean.
The results from the two approaches were nearly identical, and
we have included the output from the analyses using median
values in Multimedia Appendix 1.

Discussion

Principal Findings
Our findings support one of our three hypotheses. Specifically,
we found that user experience scores were related to several
app popularity metrics: downloads, revenue, and monthly active
users. However, none of the MARS subscales were predictive
of user retention. Therefore, user experience, at least as defined
by the MARS, is a fairly good indicator of how many people
might start to engage with, or adopt, an app but may be less
informative about users’ sustained engagement with the app.
Further, the lack of a correlation between user experience (as
measured by the MARS total score) and app store ratings
suggests that app store ratings are not a broadly useful measure
of user experience.

Relationship Between Popularity Metrics and User
Experience
The moderate rank-order correlations we observed between
popularity or revenue and user experience suggest that higher
scores on user experience, as rated by individual observers, are

characteristic of more popular apps. Importantly, however, this
relationship does not appear linear: a few apps are responsible
for nearly all users, suggesting that marginal improvements to
popularity may not be sufficient to retain users. Instead, reaching
a “popularity threshold” may be necessary, with apps below
that threshold being unlikely to gain many users.

These findings suggest that industry teams, rather than academic
ones, may be best-suited to create highly engaging and popular
products. To date, nearly all of the most engaging digital mental
health interventions have been developed by industry teams,
rather than academic teams [12,32]. It is plausible that
differences in funding sources (eg, federal grants vs flexible
capital), incentive structures (eg, priorities on publishing vs
marketing), timelines (eg, multi-year studies vs rapid testing of
prototypes), and other factors may give industry teams a
competitive advantage in developing highly engaging products.
As an example, Headspace and Calm, the two most popular
mental health and wellness apps, each raised over US $140
million in funding from venture capital firms [33]. Furthermore,
industry teams are often diverse and interdisciplinary and
charged not only with developing an engaging product but also
marketing and financing that product. Aspects of business
models and marketing may play an important role in people’s
likelihood to adopt or sustain use of a given app. For example,
word of mouth is a common way that people learn about mental
health apps [1]. Payment models also impact both adoption and
sustainment; people prefer free apps [1] but dislike “freemium
pricing” [34]. Some mental health apps have also used celebrity
advertising, such as LeBron James for Calm or Michael Phelps
for Talkspace. This paper focused on aspects of the apps
themselves rather than these other aspects of the business models
and advertising, but those aspects are worth exploring in further
work.

JMIR Hum Factors 2022 | vol. 9 | iss. 1 | e30766 | p. 7https://humanfactors.jmir.org/2022/1/e30766
(page number not for citation purposes)

Kaveladze et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The Need to Better Advance a Science of Engagement
A common presumption is that mental health apps require
sustained engagement for users to experience their intended
benefits. Taking a similar approach to the National Institute of
Mental Health Research Domain Criteria framework, Graham
et al [35] propose that engagement is a critical mechanism of
action for mental health apps. In their conceptualization,
engagement can be separated into elements that speak to design
targets such as usefulness, usability, and satisfaction, as well
as use metrics, such as those used in our analyses. Our findings
suggest, however, that use metrics might speak to different
aspects of engagement, and that more work needs to unpack
elements that lead people to adopt, use, and explore
technologies. This is logically similar to efforts in
implementation science frameworks to map key implementation
outcomes including adoption, appropriateness, and sustainment,
and consistent with work that has mapped those outcomes onto
different variables relevant to technology-enabled services [36].

As can be seen in Figure 2, while our measure of initial
engagement—ie, downloads—was predicted by several
variables, our measure of sustained engagement—ie,
retention—was not. While retention was quite low in general,
it still varied considerably across apps (retention 7 days after
download ranged from 5.5% to 19.1%). Our study echoes
previous research suggesting that retention is particularly
challenging to understand [9]. One reason that retention may
be so challenging to predict using the statistical approaches
typical in behavioral sciences is that on the user level, retention’s
distribution is highly skewed: most users do not engage with a
given app more than once or twice but some engage much more
often; hence, mean retention values do not represent most users’
experiences. More in-depth forms of analysis such as user
interviews and longitudinal analyses may be required to
understand patterns in mental health app user retention. These
qualitative approaches can go beyond just how many people
use or stop using an app to explore richer questions regarding
users’ journeys with an app. In turn, these data can help to
identify critical aspects of the user experience.

It is also worth noting that user engagement, even retention, is
likely a heterogeneous concept. Even among users who are
considered to be retained, patterns of use might differ, including
among different dimensions such as frequency (as in consistent
vs bursty use), intensity (as in moderate or super users [37]),
time (as in circadian patterns in use [38]), or type (as in using
clinically meaningful app features [39]). These dimensions
similarly characterize other types of complex behavior such as
exercise (ie, the Frequency, Intensity, Time, and Type model).
For some users, decreased use over time could be a sign that
the app improved their well-being or that the user completed
the app’s intervention as intended. Therefore, although much
has been made of the poor rates of long-term sustainment in
mental health apps [9-11], some users likely experience “happy
abandonment,” wherein a lack of sustained use suggests they
received what they needed. Unfortunately, given that our user
retention information was obtained from app-level analytic data,
we were not able to determine individual-level characteristics
of retention and engagement. However, future work could help
determine the degree to which app engagement patterns are

shaped by characteristics of the app, such as user experience or
app features, and characteristics of the different ways that people
use digital health products.

Another reason that retention might be a heterogeneous concept
is that mental health apps vary in their intended user journeys.
Some apps might be designed for people to use them every day,
whereas others might be designed for more emergent yet
infrequent situations. Therefore, in addition to individual-level
characteristics of retention and engagement, it is also worth
noting that retention might have app-level characteristics; as
such, retention may not allow apples-to-apples comparisons of
apps. Again, because our data were obtained from an analytics
platform rather than the apps themselves, we were not able to
conduct more nuanced analyses of retention; however, efforts
that could combine and synthesize engagement data across
platforms [40] could help investigate these questions among
others.

Given that achieving sustained engagement is so difficult for
mental health apps, an alternative strategy involves
circumventing the challenge of long-term engagement altogether
by creating digital interventions that are designed to confer
benefit rapidly. An example comes from the growing literature
on digital single-session interventions, which are designed to
produce benefits after just one sitting [41-43]. These
interventions attempt to reimagine how to support users’mental
health in ways that differ from typical therapist-client
interactions but might hold greater appeal and utility.

Limitations
There are several limitations to consider in this work. First, the
set of 56 apps observed in this study (for which One Mind
PsyberGuide chose to complete MARS reviews and for which
engagement data were available from Apptopia) are not
representative of the full array of available mental health apps,
with a likely bias toward more popular apps and those designed
for English-speaking audiences. Nonetheless, these apps
represented a fairly wide range of values across all variables.
Second, the MARS may not be an ideal measure of user
experience. Although many of the elements in the MARS
address user engagement, it is often conceptualized as an overall
measure of app quality, rather than solely user experience [19].
Furthermore, some aspects of user experience within apps might
not be captured by the MARS, such as gamification principles
[44]. Third, because the study is cross-sectional and
observational, we are unable to infer causality. Many of the
observed relationships between variables are likely bidirectional;
for example, better user experience likely causes apps to become
more popular, but apps that are more popular also gain the
resources to improve their user experience design. Fourth, apps
differed in the time distances between their respective MARS
review dates and the dates for which their rating and retention
data were available, although all MARS ratings occurred during
the 1-year period for which analytic data were obtained. Lastly,
as the aim of this paper was to understand how aspects of user
experience relate to engagement and popularity, we do not know
if using these mental health apps actually helps people to achieve
their goals in using these apps or to derive clinical benefits. In
this study, we did not have access to analytic data on user
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outcomes, but such data would be a strength of a solution that
facilitates better collaboration with developers for analysis and
evaluation purposes.

Future Directions
Although this analysis observes rank-order trends, it does not
explain why a few apps, such as Calm and Headspace, are
exponentially more popular than others. Future research can
explore the complex combination of factors, such as marketing
dollars and market trends, which could explain these few apps’
outsized popularity. Such research might also explore the
optimal conditions for making influential and effective apps.
For example, industry teams tend to create more popular and
engaging apps than academic teams do; however, solutions to
user engagement problems plaguing these apps might be best
pursued by rigorous research combining quantitative, qualitative,
and experimental approaches [45]. Thus, research could examine
if collaborations between academic and industry teams may be
particularly fruitful in creating evidence-based and highly
scalable interventions. Finally, given low retention among

mental health apps, future work should explore innovative
intervention strategies by which apps can support mental health
in ways that appeal to users.

As one resource for exploring these future directions and other
ideas, we encourage researchers to explore the publicly available
data sets that we used to conduct our analyses [29], which
contain data on more apps and more variables (including
credibility, intervention target, intervention approach, app price,
and average time spent per session) than those examined in this
study.

Conclusions
We found that popular mental health apps—as defined by their
number of downloads, revenue, and number of monthly active
users—tend to be rated as having a better user experience than
less popular apps. We also noted that user retention metrics are
not well-predicted by other app-level metrics. We encourage
further collaboration between industry and academic teams to
better advance a science of engagement and to create more
effective and appealing mental health apps.
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Multimedia Appendix 1
Preregistered analysis and sensitivity analysis output.
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