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Abstract

Background: Although the past decade has witnessed the development of many self-management mobile health (mHealth)
apps that enable users to monitor their health and activities independently, there is a general lack of empirical evidence on the
functional and technical aspects of self-management mHealth apps from a software engineering perspective.

Objective: This study aims to systematically identify the characteristics and challenges of self-management mHealth apps,
focusing on functionalities, design, development, and evaluation methods, as well as to specify the differences and similarities
between published research papers and commercial and open-source apps.

Methods: This research was divided into 3 main phases to achieve the expected goal. The first phase involved reviewing
peer-reviewed academic research papers from 7 digital libraries, and the second phase involved reviewing and evaluating apps
available on Android and iOS app stores using the Mobile Application Rating Scale. Finally, the third phase involved analyzing
and evaluating open-source apps from GitHub.

Results: In total, 52 research papers, 42 app store apps, and 24 open-source apps were analyzed, synthesized, and reported. We
found that the development of self-management mHealth apps requires significant time, effort, and cost because of their complexity
and specific requirements, such as the use of machine learning algorithms, external services, and built-in technologies. In general,
self-management mHealth apps are similar in their focus, user interface components, navigation and structure, services and
technologies, authentication features, and architecture and patterns. However, they differ in terms of the use of machine learning,
processing techniques, key functionalities, inference of machine learning knowledge, logging mechanisms, evaluation techniques,
and challenges.

Conclusions: Self-management mHealth apps may offer an essential means of managing users’ health, expecting to assist users
in continuously monitoring their health and encourage them to adopt healthy habits. However, developing an efficient and
intelligent self-management mHealth app with the ability to reduce resource consumption and processing time, as well as increase
performance, is still under research and development. In addition, there is a need to find an automated process for evaluating and
selecting suitable machine learning algorithms for the self-management of mHealth apps. We believe that these issues can be
avoided or significantly reduced by using a model-driven engineering approach with a decision support system to accelerate and
ameliorate the development process and quality of self-management mHealth apps.

(JMIR Hum Factors 2022;9(2):e29767) doi: 10.2196/29767
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Introduction

Self-management mobile health (mHealth) apps use mobile
devices for health services and offer a sustainable means of
enhancing self–health care management to achieve wellness
goals, such as health monitoring, disease detection, behavior
change, and emotion management, enabling individuals to
independently manage their lives and activities and make
appropriate decisions. They comprise different categories,
ranging from simple apps for water intake tracking to complex
apps that can adapt to individuals’ lives based on their activities.
The power of self-management mHealth apps has increased
with the use of built-in mobile technologies (eg, cameras, GPS,
and accelerometers) and machine learning (ML) algorithms to
create intelligent mobile apps. Such apps are characterized by
personalized services and recommendations and by the
automatic logging and recognition of individuals’ behaviors
and activities.

Although mobile apps are extensively used for self–health care
management, the ongoing development of mobile device
technologies and programming languages has increased the
need for mobile app solutions to keep pace with development
practices. Developing high-quality intelligent self-management
mHealth apps requires substantial knowledge of mobile
programming languages, app architectures, design patterns, and
latest technologies. Considerable time is required from
researchers and developers to learn and master such knowledge
because of the different characteristics, requirements, and
components of each mobile app. Furthermore, many challenges
and issues may arise during app development. Therefore, we
conducted a comprehensive systematic literature review (SLR)
and evaluation of existing self-management mHealth apps that
focus on self–health care management, based on a formal
protocol, to analyze their characteristics and current challenges,
including infrastructure, functionalities, user interface (UI)
components, screen navigation, services and technologies,
security and authentication, use of architectures and patterns,
evaluation, and issues to provide a guide for self-management
mHealth app infrastructure to facilitate further development.

Although several SLRs on mHealth apps have been previously
conducted, our SLR is distinguished by providing engineering
perspectives on 3 different sources: research papers, app stores,
and GitHub repositories. The SLR involved the analysis and
synthesis of empirical evidence by software engineering

researchers to help researchers and developers in three main
aspects: (1) to identify the characteristics and challenges of
existing self-management mHealth apps, (2) to understand the
differences and similarities of existing self-management
mHealth apps and find the gap between research papers and
commercial and open-source apps, and (3) to suggest future
research directions based on gaps identified in the domain. The
main contributions of this study are as follows:

• The definition of an SLR protocol following the SLR
guidelines by Kitchenham and Charters [1], which is based
on a wide range of literature and the selection of 52 research
papers, 42 app store apps, and 24 open-source apps as
primary studies

• Extraction, analysis, synthesis, and reporting of empirical
evidence from the selected primary studies

• Provision of guidance for researchers and developers to
deeply understand the characteristics and challenges of
self-management mHealth apps

• Suggestions of solutions to overcome the limitations of
existing self-management mHealth apps

The principal aim of this SLR was to obtain a detailed view of
existing self-management mHealth apps used for self–health
care management. A specific objective was to better characterize
the functional and technical aspects of these apps.

Methods

Study Design
This review presents the main characteristics and challenges of
the self-management of mHealth apps. We targeted apps that
use mobile devices for the self–health care management of
general users. The study process diagram is shown in Figure 1
where it is divided into 3 main phases for analyzing apps that
exist in the knowledge base:

1. Phase 1: a comprehensive review of existing research papers
on self-management mHealth apps in digital libraries

2. Phase 2: an exploration of self-management mHealth apps
available through Britain’s Apple App Store and Android
Google Play, as well as an evaluation of the selected apps
using the Mobile App Rating Scale (MARS) [2]

3. Phase 3: analysis of open-source apps available on GitHub
based on specific criteria and an automatic tool (ie,
SonarCloud; SonarSource SA) [3]

JMIR Hum Factors 2022 | vol. 9 | iss. 2 | e29767 | p. 2https://humanfactors.jmir.org/2022/2/e29767
(page number not for citation purposes)

Alwakeel & LanoJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Process diagram for this systematic literature review. mHealth: mobile health.

Review Methodology
This section presents related literature in the knowledge base,
which forms the foundation of our SLR. The SLR follows the
Kitchenham and Charters [1] guidelines, which divide the review
of each phase into 3 main stages of the review: planning,
conducting, and reporting. All the stages were prepared by the
first author and revised by the second author. The following
subsections outline the steps that were followed.

Research Questions

Overview
To investigate and deduce empirical evidence of existing
self-management mHealth apps, we determined 2 key research
questions (RQs):

• RQ1: What are the main characteristics of current
self-management mHealth apps?

• RQ2: What are the challenges and issues faced by current
self-management mHealth apps?

Detailed Explanation of the RQs

The Characteristics of Self-management mHealth Apps

We determined some characteristics of self-management
mHealth apps that we were interested in monitoring because of
their importance in the development of mobile apps. We
collected these characteristics based on their availability during
each phase (Textbox 1).

JMIR Hum Factors 2022 | vol. 9 | iss. 2 | e29767 | p. 3https://humanfactors.jmir.org/2022/2/e29767
(page number not for citation purposes)

Alwakeel & LanoJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 1. Characteristics of self-management mobile health apps.

Crucial functionalities

• Each app comprises several components that define its functionality. We have summarized the main functionalities of the reviewed apps.

User interface components

• We determined the user interface components used by the users for interaction.

Navigation and structure

• Here, we explored the apps’ organization and methods of navigating the app screens.

Services and technologies

• We determined the remote and local services that are external to the assigned app but handled by it, such as machine learning algorithms; built-in
technologies; and access to other apps, frameworks, and libraries.

Security features

• We were interested in defining the security aspects and authentication mechanisms used in the self-management of mobile health (mHealth)
apps.

Architectures and patterns

• There are different architectures and patterns for building apps, such as client-server, model-view-controller, and
view-interactor-presenter-entity-router. In this study, we determined the most commonly used architectures and patterns. Furthermore, we specified
the architecture for implementing machine learning, including web-based inference, offline inference, or both.

Logging mechanisms

• We determined the apps’ method for logging data, either manually or automatically.

Development approach

• We explored the main development approaches which developers use to construct apps.

Operating system and programming language

• We identified the operating system and programming languages used in the reviewed apps.

Evaluation

• Here, we were concerned with the techniques for evaluating self-management mHealth apps used by researchers in phase 1. Furthermore, we
evaluated the selected apps using Mobile App Rating Scale [2] and SonarCloud (SonarSource SA) tools to assess their quality in phases 2 and
3. We used the Mobile App Rating Scale in phase 2, which is a reliable tool developed by an expert panel for evaluating the quality of mHealth
apps and comprises an initial section for gathering general and technical information about the assigned app and 5 specific sections: engagement,
functionality, aesthetics, information quality, and subjective quality. Each section has a group of items that can be scored from 1 (inadequate) to
5 (excellent). These scores are used to calculate the mean score for each section. Finally, the average values of the mean of the first 4 sections
(ie, engagement, functionality, aesthetics, and information quality) are calculated to obtain the final measurements of app quality. All apps were
evaluated and compared to find the differences between platform versions. In phase 3, we used a web-based service (SonarCloud) for static code
analysis, as well as manual exploration to identify app characteristics.

The Challenges and Issues of mHealth Apps

We identified the limitations and challenges faced by researchers
and developers when developing self-management mHealth
apps. In phase 1, we summarize the researcher’s challenges and
issues. In phases 2 and 3, we identified potential issues that can
affect the quality of apps using MARS and SonarCloud, such
as design issues, bugs, code smell, and duplication.

Search Strategy

Overview
A search strategy was followed to explore the literature that
could help answer the RQs. It comprises 3 main stages: defining
search strings, selecting data sources, and searching the data

sources. As previously mentioned, the review is divided into 3
independent phases, each of which has separate data sources
and search strings. In the first phase, we followed the quasi–gold
standard [4] approach, including manual and automatic searches,
as well as snowballing. The second phase included manual and
automatic searches, whereas the third phase was limited to
automatic searches.

Defining Search Strings
The search string of the first phase was defined by combining
synonymous terms using OR and AND. On the basis of our RQs,
5 search strings were identified, as listed in Textbox 2.

In the second phase, an extensive search was performed in
Britain’s Apple Store and Google Play from August 16 to
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August 21, 2020. Although the search was limited to Britain’s
app stores because of the requirement to specify the user’s
location, most of the selected apps were available in other stores.
We started the automatic search by applying the following
search string: mHealth, Healthcare, and Health. However, many
unrelated apps were identified. Consequently, we changed the
search strategy to a manual exploration of the Top Free App

under the Health and Fitness category. These apps are free to
download, although many require a monthly payment or upgrade
payment to access all features.

In the third phase, we used the search strings mHealth,
Healthcare, and Health in GitHub from October 5 to October
9, 2020, to identify open-source mHealth apps.

Textbox 2. Search string used for digital libraries.

Search strings

1. “mHealth” AND (“app” OR “application”).

2. “mobile” AND “health” AND (“app” OR “application”).

3. “Personal” AND “Mobile” AND “healthcare” AND (“app” OR “application”).

4. “Self-management” AND “healthcare” AND (“app” OR “application”).

5. “Smartphone” AND “health” AND (“app” OR “application”).

Data Sources
To find studies related to phase 1, we followed an automatic
search using the following digital libraries: IEEE Xplore,
ScienceDirect, ACM Digital library, SpringerLink, MEDLINE,
PubMed, and Sage. To complement the automatic search, a
manual search was conducted on relevant journals, including
Pervasive and Mobile Computing and Mobile Networks and
Mobile Networks and Applications. To find as many studies as
possible, we used the snowballing strategy to gather additional
studies from the reviewed studies. We used Google Scholar to
search for further studies identified from snowballing. In phase
2, we used an automatic and manual search within the following
official digital British app stores: Apple iPhone (App Store)
and Android (Google Play). In the third phase, we applied an
automatic search on GitHub to download open-source apps.

Search Process in Data Sources
To identify all related studies, search strings were applied to
the selected digital libraries. Initially, 7982 results were retrieved
within the chosen search string as follows: 2431 (30.46%) papers
from IEEE, 223 (2.79%) papers from ScienceDirect, 158
(1.98%) papers from ACM, 4190 (52.49%) papers from
SpringerLink, 461 (5.78%) papers from MEDLINE, 468 (5.86%)
papers from PubMed, and 51 (0.64%) papers from Sage. The
results were filtered based on the title and abstract, and
duplicated and unrelated papers were removed. Then, of the
7982 papers, 654 (8.19%) were downloaded for examination.
According to the inclusion and exclusion criteria, of the 654
studies, 44 (6.7%) studies were included from the automatic
search. Furthermore, we found 2 studies from the manual search
and 6 studies from snowballing. Thus, we collected 52 studies
from automatic and manual searches, as well as snowballing.
Manual search studies were from ScienceDirect and
SpringerLink. For the 6 studies from snowballing, 3 (50%)

papers were from IEEE, and 1 (17%) paper each was from
SAGE, ACM, and SpringerLink.

The systematic search process was applied to identify mobile
apps for the general population in phase 2. Initially, 1904 apps
were retrieved with the chosen search strategy: 803 (42.17%)
apps from Apple’s App Store and 1101 (57.83%) apps from
Android’s Google Play. The results were filtered based on the
inclusion and exclusion criteria and availability in both app
stores. After removing duplicate apps, we downloaded and
explored 100% (48/48) of apps on each platform, iOS and
Android. A total of 48 apps were reviewed for further refinement
after applying the inclusion and exclusion criteria. Then, 6%
(3/48) of apps from each store were removed as they were not
used for self–health care management. Therefore, of the 42
apps, the final number of apps included on each platform was
21 (50%).

In phase 3, the systematic search process was applied to GitHub
to identify self-management mHealth apps for the general
population using the Swift and Kotlin programming languages.
Initially, 491 apps were retrieved with the chosen search strategy
as follows: 370 (75.4%) apps with Swift programming language
and 121 (24.6%) apps with Kotlin language. After removing
duplicates and unrelated titles, of the 491 apps, we obtained 64
(13%). These apps were downloaded and analyzed based on
the inclusion and exclusion criteria. After applying the inclusion
and exclusion criteria, of the 64 apps, we obtained 24 (38%).
These apps were analyzed using the SonarCloud tool, including
13 (54%) iOS and 11 (46%) Android apps.

Inclusion and Exclusion Criteria
Textbox 3 presents the inclusion and exclusion criteria that were
applied to the downloaded papers that resulted from the manual,
automatic, and snowballing search of digital libraries, as well
as apps that resulted from digital app stores and GitHub.
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Textbox 3. The inclusion and exclusion criteria of self-management mobile health apps.

Phase 1

• Inclusion criteria

• Papers presenting the design and implementation of either or both Android and iOS self–health care management apps

• English peer-reviewed papers published from 2008, the year the App Store was announced [5], to 2020

• The most recent and complete version of a study if it had multiple versions

• Exclusion criteria

• Papers presenting theoretical research without implementation

• Papers describing apps for wearable devices

• Papers targeting children or people with special needs

• Short papers with <4 pages as they could not contain sufficient information

Phase 2

• Inclusion criteria

• Apps designed for general users, existing in both Apple and Android app stores

• Apps that were free to download and could support the English language

• Apps stating the aim as self–health care management

• Apps rated by >10,000 users and having a score of ≥4 out of 5 to ensure that the selected apps were satisfying

• The last update of the current app had to be from January 01, 2018 to ensure that the app was up to date

• Exclusion criteria

• Apps designed for children or people with special needs

• Apps related to an external device such as a smartwatches or shoes

• Apps that did not clarify the date of the last update

Phase 3

• Inclusion criteria

• Apps written using either or both Swift or Kotlin

• Open-source apps that supported the English language

• Apps stating the aim as self–health care management

• The source code of the app had to exceed 1000 lines of code

• Exclusion criteria

• Apps designed for children or people with special needs

• Apps related to external devices such as smartwatches or shoes

Overview of the Selected Studies
In phase 1, of 52 studies, 27 (52%) were from IEEE, 18 (34%)
from SpringerLink, 3 (6%) from ACM, 2 (4%) from PubMed,
1 (2%) from ScienceDirect, and 1 (2%) from Sage. MEDLINE
digital data sources were not included as the downloaded papers
focused on analyzing user behavior rather than app development,
which was outside the scope of this study. In phase 2, we
reviewed 21 apps on each platform, each of which had 2
versions: 1 in the Apple App Store and 1 in Android Google
Play. In phase 3, a group of 24 open-source apps was reviewed
manually and automatically, including 11 (46%) Android and
13 (54%) iOS apps.

In total, we reviewed 41 iOS and 77 Android apps, including 7
(17%) iOS and 45 (58%) Android apps in phase 1, 21 (51%)
iOS and 21 (27%) Android apps in phase 2, and 13 (54%) iOS
and 11 (46%) Android apps in phase 3. The apps in phase 2
have almost the same functionalities and structures on both
platforms. Thus, we use a letter with a number (eg, A1) to
represent the app name of the 2 versions, and we specify the
differences if they are found on each app.

Results

Overview
Here, we summarize the findings obtained by reviewing the
selected papers and apps based on our RQs. The general context
of apps from the data extracted in phases 1, 2, and 3 are
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presented in Multimedia Appendix 1 [6-81]. The main
characteristics of the 3 phases are presented in Multimedia
Appendix 2.

The Characteristics of Self-management mHealth Apps

Crucial Functionalities
Self-management mHealth apps had several focuses, including
physical health, weight control, sleep, mental health, disease,
women’s health, and monitoring, as shown in Figure 2, where
physical health and weight control were the most frequent focus
in the 3 phases. These apps used various terminologies to
describe their crucial functionalities, including detection,
recognition, prediction, estimation, monitoring, personalization,
and recommendations. The word detection was used to detect
whether there was something abnormal in data, such as a
disease, whereas the word recognition was used to recognize
the type of something, such as the type of specific activity or
food. Prediction and estimation can use collected data to predict

a situation or estimate a value. Monitoring depends on the
calculation methods used to monitor the user’s progress.
Regarding personalization and recommendation, the apps
provided customized plans, guidelines, and suggestions based
on the users’ data and their progress. Figure 3 shows the
frequency of studies and apps, including their functionalities in
the 3 phases. Specifically, 60% (31/52) of the studies in phase
1 focused on recognition. However, 81% (34/42) of the apps in
phase 2 and 83% (20/24) of the apps in phase 3 focused on
monitoring. In contrast, a few studies in phase 1 demonstrated
the usual app functionalities such as log-in and analysis as they
focused on presenting their new contributions in developing
ML algorithms. Phases 2 and 3 profusely included usual
functionalities, including log-in, payment, synchronization of
data from other apps, rating or questionnaire, search, sharing
data using email, WhatsApp, and Telegram, and analysis to
periodically visualize reports or charts to help users easily read
results and achieve their desired goals.

Figure 2. The general focus of reviewed apps.

Figure 3. The key functionalities in the 3 phases.
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UI Components
The most frequent UI components in the 3 phases were labels,
images, buttons, input boxes, lists, visualized charts to present
user progress, menu or hamburger menu, and radio buttons.
Other components such as tables, visual control bars, and virtual
pets appeared less frequently. Furthermore, apps in phases 2
and 3 had more frequency of the following UI components than
phase 1: switch, scroll bar, picker, calendar, and media.

Navigation and Structure
To navigate through an app’s screens, the next and back buttons,
tab structure, hamburger menu, and home page could be used.
In phase 1, the tab structure appeared in 12% (6/52) of studies.
The next and back buttons were used in 10% (5/52) of studies.
One of the studies included navigation through both the next
and back button and the tab, whereas another study supported
navigation with the next and back button, tab pages, and
hamburger menu. Approximately 4% (2/52) of studies reported
that the user could use the home page to navigate to other pages.

Most apps (40/42, 95%) in phase 2 had, at start-up, multiple
simple pages for customization with backward and forward
arrows; however, the basic app was presented as a tab structure
with multiple tabs. In the case of iOS, of the 42 apps, 18 (43%)
were designed with a tab structure, 2 (5%) supported navigation
with tabs and a hamburger menu, and the remaining 1 (2%) app
had a main page with hamburger menu. For Android, of the 42
apps, 17 (40%) followed the tab structure, 3 (7%) had a page
with a hamburger menu, and 1 (2%) had a main page with
buttons to navigate to other pages. Consequently, 86% (36/42)
of apps had a similar structure on both platforms, where 81%
(34/42) of the apps followed the tabbed UI approach, and
approximately 5% (2/42) of the apps had a main page with
hamburger menu.

In phase 3, 71% (17/24) of apps had a tabbed UI structure,
including 33% (8/24) having a tab with a back arrow to navigate
to the previous or main page, 29% (7/24) of apps supporting
navigation through only tabs, and 8% (2/24) of apps supporting
navigation through both tabs and hamburger menu.
Approximately 29% (7/24) of apps had a main page structure,
including 8% (2/24) supporting a main page with a back arrow,
8% (2/24) having a main page with a back arrow and menu, 8%
(2/24) having a main page with navigation buttons to other
pages, and 4% (1/24) having a main page with a menu.

Services and Technologies
Several local and remote services were used in the reviewed
studies and apps. These services included accessing remote and
local libraries and technologies; accessing external libraries
using an application programming interface (API) such as
Clarifai, ZXing (Zebra Crossing), Edamam, Dialogflow, and
ToneAnalyzerV3 (IBM Watson); web services; cloud services
such as Google’s cloud computing engine (Firebase); linking
to other apps such as social media; and Google Maps. In
addition, some apps used developer frameworks such as
HealthKit, ARKit, SceneKit, and StepCounter.

Many studies and apps in the 3 phases had access to built-in
technologies such as cameras, motion sensors (accelerometers

and gyroscopes), location (GPS), and microphones. Phases 2
and 3 had access to photographs, vibrations, networks, audio,
phones, and storage. These technologies can collect various
types of data, including sensor data, images, voice, and text.
The collected data can be used to process through ML
algorithms to obtain useful information.

Several studies in phase 1 used ML algorithms that differentiated
between supervised and unsupervised learning with their
branches: classification, regression, clustering, and association.
Some studies evaluated multiple algorithms to determine the
most accurate algorithm. Most of the investigated studies used
supervised learning for classification, including naïve Bayes,
support vector machines, logistic regression, K-nearest neighbor,
rule-based classifiers, decision trees, ridge, AdaBoost, bagging,
Gaussian processes, ensemble of nested dichotomies, rotation
forest, Fisher vector representation, linear classifiers, and
artificial neural networks (NNs), which included specific types
such as deep NNs and deep convolutional NNs. Moreover,
supervised learning was used for regression, which comprised
linear regression (LR), Bayesian ridge, support vector
regression, gradient boosting, and AdaBoost. Some studies used
algorithms for both classification and regression, such as random
forest. Other studies used unsupervised learning for clustering,
such as the density-based spatial clustering of apps with noise
and molecular complex detection. Other used algorithms were
the kernel null Foley-Sammon transform and t-distributed
stochastic neighbor embedding, the threshold method, decision
tables, radial basis function kernel, ensemble extreme learning
machine, and sequential minimal optimization. In contrast, many
studies used measurement methods, including BMI, basal
metabolic rate, Gaussian and LR functions, and general
calculations.

Security Features
Authentication through log-in was the principal security feature
in the 3 phases, which was achieved either by creating an app
account using email or linking it with other accounts such as
Facebook, Apple, or Google. However, only one of the studies
(S16) mentioned authentication through log-in in phase 1. This
limitation could be because of the focus on building and
evaluating a new ML algorithm rather than a complete app.
Approximately 95% (40/42) of apps in phase 2 and 42% (10/24)
of apps in phase 3 supported log-in. The log-in password was
hidden using points or stars.

Architectures and Patterns
In phase 1, some studies involved the development of mobile
apps to collect real data; however, they analyzed these data on
a physical computer, server, or specific tool (eg, Waikato
Environment for Knowledge Analysis or MATLAB) to extract
features and identify the most accurate ML algorithm. Most of
these studies focused on building a suitable model using ML
algorithms without providing real information about the mHealth
app, which integrates the final model with implementation or
architecture. These apps stored the automatically-collected data
remotely on a server (2/52, 4%) using a client-server architecture
(a web-based mechanism) or locally (7/52, 13%) on a mobile
device (an offline mechanism). Approximately 2% (1/52) of
studies used pre-existing data sets for processing on a physical
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computer to build the model. Other studies focused on
developing complete self-management mHealth apps, in which
54% (28/52) of studies used a web-based mechanism for
developing the apps. They followed a client-server architecture,
where a mobile app acts as a client node to receive data and
connect to a server (sometimes a cloud server) to process data
or perform computations. Other studies (12/52, 23%) used an
offline mechanism to process received data locally on mobile
devices. One of the studies (S24) in phase 1 followed
MobileNetV2 (deep NN architecture). In S13, the authors used
cloud-based virtualization (hypervisor architecture), which
depends on virtual swaps between mobile sessions to separate
the physical resources into virtual resources on a cloud server
to use computing power efficiently. Consequently, in phase 1,
58% (30/52) of the studies used a web-based mechanism, and
37% (19/52) used an offline mechanism. In phase 3, 83%
(20/24) were web-based apps and 17% (4/24) were offline apps.

Regarding the design pattern, 2 authors (S38 and S40) in phase
1 stated that they used the model-view-controller (MVC) design
pattern, whereas, in phase 3, a total of 3 design patterns were
used in the explored apps: MVC, model-view-viewmodel, and
view-interactor-presenter-entity-router. MVC was used in 75%
(18/24) and model-view-viewmodel in 21% (5/24) of the apps.
View-interactor-presenter-entity-router was used in 4% (1/24)
of apps.

In terms of the architecture for implementing ML mobile apps
in phase 1, of the 52 studies, 18 (35%) used web-based inference
based on a pretraining model by researchers, 10 (19%) used
offline inference on devices based on a pretraining model by
researchers, 3 (6%) used both web-based and offline inference
based on a pretraining model by researchers, and 2 (4%) used
web-based inference based on ready solutions (API), whereas,
29% of ML apps in phase 3 used web-based inference based on
ready solutions (API). Web-based and offline inferences were
used for the same functionality in S30 and S51, where the web
was used to accelerate the process, and offline was used when
a connection was lost but with lower performance and high
resource consumption. However, S1 used both web-based and
offline inferences for different functionalities.

Logging Mechanism
Most studies and apps collected data from user information,
activities, or behaviors, which could be gathered automatically
from sensors, manually by users’ logging, or both. Automatic
collection can be achieved either through synchronization and
importing of data from other apps or by accessing built-in
technologies or developer frameworks such as HealthKit on
iOS or Google Fit on Android. Then, the collected data were
automatically analyzed using ML algorithms or calculation
methods to provide useful feedback and personalized services.

In phase 1, most studies (24/52, 46%) used built-in technologies
for automatic data collection. Other studies required manual
input of information (8/52, 15%), image capture (14/52, 27%),
or voice recording (2/52, 4%). Few studies (4/52, 8%) supported
both automatic collection and manual inputs.

In phase 2, manual logging was used in 62% (26/42) of apps
and could be performed through barcode scanning, input of

personal information, or searching the app’s internal database.
Approximately 24% (10/42) of the apps supported automatic
logging through built-in technologies or synchronization with
other apps. Approximately 14% (6/42) of the apps supported
both automatic and manual logging.

Most apps (18/24, 75%) in phase 3 supported manual logging
of data such as personal information, food and water
consumption, sleep, and emotion. Approximately 17% (4/24)
of the apps supported manual logging and synchronization. One
of the apps presented real-time information from an external
server, and another app supported the automatic collection of
data.

Development Approach
Prototyping was the most commonly used approach adopted in
15% (8/52) of studies. Other studies used agile (S35), extreme
programming (S15), iterative development (S38), or
user-centered approaches (S26 and S29). The remaining studies
in phase 1 and the other phases did not mention their approach.

Operating System and Programming Language
In phase 1, 85% (44/52) of studies targeted Android, forming
the majority. Approximately 13% (7/52) supported iOS, and
2% (1/52) targeted both iOS and Android. In terms of operating
system (OS) versions, S2 used Android OS version 4.4.2; S6
and S28 used Android OS version 4.1.2; S22 used Android OS
version 1.6; S29 used Android OS version 4.2.2 (Jellybean);
S41 used Android OS version 2.3; and S39 targeted both
platforms, with Android version 4.0 (Ice Cream Sandwich) and
iOS version 3.2. The Java programming language was used in
S1, S3, S16, S17, S21, S28, S31, S34, S40, and S38. Plain Old
Java Objects were used in S42. Each selected app in phase 2
was available on both the Android and iOS OSs. We reviewed
and evaluated 24 apps in phase 3, 11 (46%) of which had
Android OS and 13 (54%) of which had iOS.

Evaluation
Different evaluation techniques were used in phase 1; however,
most studies (38/52, 73%) measured the performance of ML
algorithms through experiments, pilot studies, or randomized
controlled trials and compared the performance with state of
the art. Furthermore, some studies used a specific tool to test
the accuracy of various classifiers and select the most
appropriate one. For example, 12% (6/52) of the studies used
the Waikato Environment for Knowledge Analysis, and
approximately 6% (3/52) used MATLAB. Furthermore,
cross-validation was used in approximately 17% (9/52) of the
studies to accurately calculate the performance metrics. Such
metrics could include confusion matrix, sensitivity, specificity,
and accuracy. Other studies (4/52, 8%) evaluated through a
usability study, such as user acceptability and subjective surveys.
Approximately 10% (5/52) of the studies combined either or
both comparisons with state-of-the-art and usability studies.

In phase 2, we applied a systematic quality evaluation of the
apps selected from app stores. The evaluation was conducted
by the first author and revised by the second author. Each app
was opened on both the Android and iOS platforms for
evaluation. We evaluated the apps using MARS, comprising 5
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main sections (engagement, functionality, aesthetics,
information, and subjective quality), which are presented in
Multimedia Appendix 3, where the tables list the scores for each
section and the final mean score of every app. The app’s section
score was calculated by taking the average score of each item
for each app. A2 and A17 received the highest score (4.6) in
the engagement section, whereas A10 and A16 received the
lowest score (3.2). The mode of the functionality section was
4.25, whereas it was 4.7 in the aesthetics section. The
information section had the highest score (4.9) in 2 apps (A3
and A15), whereas the other apps received a score of 4.7.

Table 1 reports the mean scores for an overall score of the
quality of each app and the subjective quality. The overall score

of the app quality was the average of the section scores
(excluding subjective quality, which was calculated separately).
The median overall mean score was 4.46/5. A2 and A17
received the highest overall score (4.56/5), whereas A10 had
the lowest score (3.83/5). In subjective quality evaluation, A6
and A17 received the highest score (4.25/5), and A13 had the
lowest score (2/5).

In phase 3, we evaluated the apps using SonarCloud, as shown
in Multimedia Appendix 4. We found that most apps had a
relatively small number of lines of code, ranging from 1.1 to 7
K.

Table 1. Overall and subjective Mobile App Rating Scale evaluation of self-management mobile health apps.

Subjective quality, mean (SD)Overall score, mean (SD)App IDa

3.75 (0.50)4.46 (0.27)A1

4 (0.82)4.56 (0.21)A2

2.75 (1.26)4.06 (0.60)A3

2.75 (1.26)4.45 (0.33)A4

4 (0.82)4.51 (0.22)A5

4.25 (0.96)4.38 (0.44)A6

2.25 (0.96)4.14 (0.47)A7

3.25 (1.71)4.46 (0.27)A8

2.75 (1.26)4.19 (0.51)A9

2.25 (0.96)3.83 (0.64)A10

2.25 (0.96)4.14 (0.47)A11

3.25 (1.71)4.46 (0.27)A12

2 (1.41)4.45 (0.33)A13

2.25 (0.96)4.14 (0.47)A14

3.25 (1.71)4.38 (4.45)A15

3 (1.41)4.04 (0.63)A16

4.25 (0.96)4.56 (0.21)A17

2.5 (1.0)4.32 (0.30)A18

4 (0.82)4.51 (0.22)A19

2.75 (1.26)4.36 (0.43)A20

2.75 (1.26)4.51 (0.22)A21

aApp ID represents the app name of the 2 versions, and we specify the differences if they were found for each app.

The Challenges and Issues of Self-management
mHealth Apps
Some studies in phase 1 mentioned general challenges related
to mobile devices and app architecture. The first challenge was
the restricted number of resources (10/52, 19%), including
computational power, storage capacity, and energy efficiency.
Other studies referred to the challenge of dealing with a large
variety of mobile devices with different software and hardware,
which complicates the development of new algorithms (S28)
and causes varying levels of accuracy when data are collected

from sensors (S32). Furthermore, S17 mentioned security as a
challenge for mobile apps.

In contrast, S23 summarized the drawbacks of cloud-based
approaches (a web-based mechanism): latency, privacy, cost,
and connectivity. S23 also mentioned the limitations of the
offline mechanism that integrates the model in the app, which
requires republishing a new version of the app with each update
of the model and could be inconvenient for the user and result
in a waste of time. S42 mentioned the challenge of designing
mHealth apps that succeeded in attracting and sustaining users’
interests.
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Other studies encountered difficulties in collecting and dealing
with the collected data, such as identifying the position of the
device on a user’s body when collecting data in 8% (4/52) of
studies; determining the set of collected sensors in S11;
extracting efficient features from collected data in 8% (4/52)
of studies; accurate recognition of activities in real time in 6%
(3/52) of studies; and accurate detection of heart rate in 4%
(2/52) of studies, which depends on the lighting conditions and
location of the finger on the camera lens.

In terms of image processing, the authors of S45 mentioned the
limitations of mobile devices in dealing with complex images
for extracting features and classifying algorithms. The authors
of S23 and S15 mentioned that the properties of an image might
be affected by various factors, such as the angle, brightness,
focal distance, and camera resolution. The authors of S15 and
S49 stated that food recognition could be difficult because of
several factors, such as diversity of food size, form, color, and
texture, as well as deformation and segmentation of food
elements, which may affect the identification of food type and
calculation of quantity and nutritional value.

In phase 2, we found that most apps (26/42, 62%) used manual
logging of data, such as manually inputting the type and duration
of the exercise, user emotion, and the category and quantity of
consumed food, without using ML algorithms such as automatic
recognition of activity and food type. In addition, all explored
apps targeted general users without experimental or clinical
studies to support their safety, reliability, and effectiveness. We
also noticed that most apps (26/42, 62%) needed the internet to
access some functions, two of which supported offline working
through downloading of content. Approximately 33% (14/42)
of apps could work without an internet connection; and 5%
(2/42) of apps could not work at all without the internet. We
also checked whether the installed apps were hybrid or native
by activating the developer option on the Android OS from
settings and by turning on the layout bounds option. We found
that most Android apps (18/21, 86%) were native. However,
this method was not applicable to apps developed using
react-native or flutter as they convert the language to native app
code. Therefore, the number of native apps was not completely
accurate. However, it clarifies to some extent that separate
implementations need to be written for each platform, which
requires additional time, cost, and effort.

Each app in phase 3 was analyzed and evaluated using
SonarCloud, as shown in Multimedia Appendix 4. Of the 24
apps, bugs existed in 7 (29%)—1 (4%) in Android and 6 (25%)
in iOS. Approximately 17% (4/24) of apps on iOS had
vulnerability issues. Of the 24 apps, 23 (96%) on both platforms
had code smells. The highest number of code smells was 181,
whereas the lowest was 3. Most apps (18/24, 75%) had
duplications, ranging from 0.3% to 14%. Furthermore, we tried
to run the apps, and of the 24 apps, only 11 (46%) worked,
including 7 (29%) Android and 4 (17%) iOS.

Discussion

Comparison and Synthesis of Phases
In this section, we compare and synthesize the collected data
and findings from the first, second, and third phases to answer
our RQs.

By comparing the characteristics and challenges of the 3 phases,
we identified that the phases were different in terms of the use
of ML, processing techniques, functionalities, inference of ML,
logging mechanisms, evaluation techniques, and challenges.
However, they were similar in the most frequent focus, UI
components, navigation and structure, services and technologies,
authentication features, and architecture and patterns. As shown
in Tables 2, 3, and 4, we reviewed 52 studies in phase 1, 21
apps in phase 2 (each of which has 2 versions), and 24 apps in
phase 3. We found that most studies of phase 1 (43/52, 83%)
were intelligent and used ML algorithms, supporting supervised
learning (39/52, 75%), unsupervised learning (1/52, 2%), both
supervised and unsupervised learning (1/52, 2%), and accessing
external ML libraries through API (2/52, 4%). Most supervised
learning studies (34/52, 65%) focused on classification. Some
studies used ML in phase 2 (14/42, 33%) and phase 3 (7/24,
29%), where phase 3 depended on an external ML library (API).

In terms of processing techniques, most studies from phase 1
used data (25/52, 48%) and image (11/52, 21%) processing,
whereas calculation methods were the most used techniques in
phase 2 (22/42, 52%) and phase 3 (13/24, 54%). Data processing
included sensor data, questionnaire answers, conversation, and
specific data such as goals and preferred meals. The calculation
depended on specific equations such as BMI. With respect to
focus, the 3 phases were similar, with the most frequent focuses
being on physical health and weight control. However, they
differed for crucial functionalities, where recognition (20/52,
38%) and detection (9/52, 17%) were the most frequent
functionalities in phase 1. Monitoring was the most crucial
function in phases 2 and 3, representing 52% (22/42) and 54%
(13/24), respectively. The 3 phases were almost similar in terms
of UI components and navigation. The most commonly used
UI components were labels, images, and buttons, and most apps
were designed with a tab structure.

Regarding services and technologies, the camera, GPS, motion
sensors, and microphones were frequently used in the 3 phases.
The motion included access to accelerometers and gyroscopes
and had the highest percentage (21/52, 40%) in phase 1, whereas
the camera (20/42, 48%) was the most frequent built-in
technology in phase 2, and GPS (7/24, 29%) had the highest
percentage in phase 3. Apps in all phases used log-in
functionality as a security feature for authentication, which
could be achieved by creating a new account with the app using
a social media account. For architecture and patterns, most
studies in phase 1 (30/52, 58%) and apps in phase 3 (20/24,
83%) used client servers. MVC was the only pattern used in
phase 1 and the most used pattern in phase 3 (18/24, 75%).
However, phase 2 did not contain an architecture section as
there was insufficient information about it in the app stores. In
terms of inference of ML, many apps (18/52, 35%) in phase 1
used web-based inference using a pretrained model by
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researchers. Phase 3 concentrated on web-based inference, with
29% (7/24) of apps using ready solutions, such as the IBM
Watson API. Furthermore, the prototype was the most
commonly used development approach in phase 1. However,
phases 2 and 3 did not include the development approach section
because of limited information.

Most apps (46%) in phase 1 were distinguished by automating
the logging mechanism using built-in technologies and ML
algorithms to automatically recognize types, quantities, and
calories of food and physical activities such as walking, running,

or jumping with burned calories. Apps in phases 2 and 3 (26/42,
62%, and 18/24, 75%, respectively) concentrated on monitoring
functionality through manual logging of specific activities such
as eating an apple or walking.

We used different techniques for the evaluation. In phase 1, we
summarized the evaluation techniques used by the authors of
the research papers, where 58% (30/52) evaluated performance.
We used MARS evaluation in phase 2 and SonarCloud in phase
3. Thus, the results of the evaluation were different for each
phase.
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Table 2. Characteristics of phase 1 studies (N=52).

Phase 1 studies, n (%)Characteristics

Number of surveyed studies or apps

45 (87)Android

6 (12)iOS

1 (2)Both

Roles of MLa

19 (37)Recognition

6 (12)Detection

4 (8)Prediction

4 (8)Recognition and monitoring

4 (8)Recognition and recommendation

2 (4)Recognition and estimation

1 (2)Recommendation and monitoring

1 (2)Recommendation

1 (2)Estimation

1 (2)Recognition, recommendation, and monitoring

Types of ML

39 (75)Supervised learning

1 (2)Unsupervised learning

1 (2)Both

2 (4)External ML library

Processing techniques

25 (48)Data

11 (21)Image

4 (8)Image and calculation

4 (8)Data and calculation

3 (6)Voice

3 (6)Calculation

2 (4)Image, data, and calculation

Focus

19 (37)Physical health

14 (27)Weight control

9 (17)Disease

5 (10)Mental health

3 (6)Sleep

1 (2)Recipe’s recommendation

1 (2)Multidimensional

Crucial functionalities

20 (38)Recognition

9 (17)Detection

4 (8)Prediction

4 (8)Recognition and recommendation

4 (8)Recognition and monitoring
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Phase 1 studies, n (%)Characteristics

3 (6)Recommendation and monitoring

3 (6)Monitoring

2 (4)Recognition and estimation

1 (2)Estimation

1 (2)Recommendation

1 (2)Recognition, recommendation, and monitoring

UIb components

18 (35)Label

17 (33)Image

15 (29)Button

8 (15)Input box

8 (15)List

Navigation and structure

6 (12)Tab

5 (10)Back and next

2 (4)Main page

1 (2)Tab and back and next

1 (2)Tab, back and next, and hamburger menu

Services and technologies

21 (40)Motion sensors

18 (35)Camera

2 (4)GPS

4 (8)Microphone

Security features

1 (2)Log-in

Architectures and patterns

30 (58)Client-server (web-based)

19 (37)On device (offline)

2 (4)MVCc

Inference of ML

18 (35)Web-based inference

10 (19)Offline inference

3 (7)Both

2 (4)Web-ready solutions

Development approach

8 (15)Prototype

2 (4)User-centered design

1 (2)Agile

1 (2)Extreme programming

1 (2)Iterative

Logging mechanisms

24 (46)Automatic
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Phase 1 studies, n (%)Characteristics

24 (46)Manual

4 (8)Both

Evaluation

30 (58)Algorithm’s performance

9 (17)Algorithm’s accuracy

8 (15)Algorithm’s performance and cross-validation

4 (8)Usability study

1 (2)Cross-validation

aML: machine learning.
bUI: user interface.
cMVC: model-view-controller.
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Table 3. Characteristics of phase 2 studies (N=42).

Phase 2 studies, n (%)Characteristics

Number of surveyed studies or apps

21 (50)iOS

21 (50)Android

Roles of MLa

6 (14)Recognition, monitoring, and personalization

6 (14)Monitoring and personalization

2 (5)Recognition

Processing techniques

22 (52)Calculation

8 (19)Calculation and data

6 (14)Calculation, data, and image

2 (5)Voice

Focus

16 (38)Physical health

12 (29)Weight control

6 (14)Women’s health

6 (14)Sleep

2 (5)Behavior change

Crucial functionalities

22 (52)Monitoring

6 (14)Recognition, monitoring, and personalization

6 (14)Monitoring and personalization

2 (5)Recognition

UIb components

42 (100)Label

42 (100Image

42 (100)Button

42 (100)List

42 (100)Scroll bar

34 (81)Input box

Navigation and structure

18 (43)Tab (iOS)

17 (40)Tab (Android)

3 (7)Main page and hamburger menu (Android)

2 (5)Tab and hamburger menu (iOS)

1 (2)Main page and hamburger menu (iOS)

1 (2)Main page (Android)

Services and technologies

20 (48)Camera

26 (62)GPS

7 (17)Motion sensors
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Phase 2 studies, n (%)Characteristics

4 (10)Microphone

Security features

40 (95)Log-in

Logging mechanisms

26 (62)Manual

10 (24)Automatic

6 (14)Both

Evaluation

42 (100)MARSc

aML: machine learning.
bUI: user interface.
cMARS: Mobile App Rating Scale.
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Table 4. Characteristics of phase 3 studies (N=24).

Phase 3 studies, n (%)Characteristics

Number of surveyed studies or apps

13 (54)iOS

11 (46)Android

Roles of MLa

2 (8)Recommendation and monitoring

2 (8)Recognition

2 (8)Recognition and recommendation

1 (4)Recognition and monitoring

Types of ML

7 (29)External ML library

Processing techniques

13 (54)Calculation

5 (21)Calculation and data

2 (8)Data

1 (4)Image

1 (4)Voice

1 (4)Calculation and image

Focus

7 (29)Weight control

6 (25)Physical health

4 (17)Monitoring

3 (13)Mental health

2 (8)Women’s health

1 (4)Behavior change

1 (4)Multidimensional

Crucial functionalities

13 (54)Monitoring

4 (17)Recommendation and monitoring

2 (8)Recognition

2 (8)Recognition and recommendation

1 (4)Recognition and monitoring

1 (4)Monitoring and personalization

UIb components

24 (100)Label

23 (96)Input box

22 (92)Image

22 (92)Button

16 (67)List

Navigation and structure

11 (46)Tab (iOS)

4 (17)Tab (Android)
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Phase 3 studies, n (%)Characteristics

3 (13)Main page and menu (Android)

3 (13)Main page (Android)

1 (4)Main page (iOS)

1 (4)Tab and hamburger menu (iOS)

1 (4)Tab and hamburger menu (Android)

Services and technologies

7 (29)GPS

5 (21)Camera

1 (4)Motion sensors

1 (4)Microphone

Security features

10 (42)Log-in

Architectures and patterns

20 (83)Client-server (web-based)

4 (17)On device (offline)

18 (75)MVCc

5 (21)MVVMd

1 (4)VIPERe

Inference of ML

7 (29)Web-based inference through ready solutions

Logging mechanisms

18 (75)Manual

4 (17)Both

2 (8)Automatic

Evaluation

24 (100)SonarCloud

aML: machine learning.
bUI: user interface.
cMVC: model-view-controller.
dMVVM: model-view-viewmodel.
eVIPER: view-interactor-presenter-entity-router.

In terms of challenges and issues, phase 1 mentioned several
challenges, such as the restricted number of resources in mobile
devices, mobile device fragmentation, security of mobile apps,
drawbacks of web-based and offline mechanisms, designing of
an attractive and sustainable mobile app, and difficulties in
collecting and processing data to design an efficient ML
algorithm. Phase 2 reported the importance of network
connectivity, which may affect the efficiency of a mobile app
in the case of a connection loss. In addition, it highlighted the
issues of writing separate implementations for each platform
and the absence of care provider involvement in the development
and evaluation phases. Of the analyzed apps in phase 3, we
found that iOS apps had more bugs than Android apps, which
may, however, be because of the developers and not the
platform. Most apps on both platforms had code smells,

duplications, and performance issues. Only iOS apps had
vulnerability issues. Furthermore, the logging mechanisms of
the second and third phases were primitive and needed
improvement to remain up to date with those described in
research papers.

As a result, we found that commercial apps in phase 2 and
open-source apps in phase 3 had more common aspects than
the apps of research papers in phase 1. They were similar in
that most used calculation methods as processing techniques
and monitoring as a crucial functionality. In addition, they were
simple and complete apps that were partially supported by ML
and automatic logging. In contrast, apps in phase 1 were
complex and intelligent, although some of them were
incomplete, presenting a gap between real and research paper
apps.
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Principal Findings
This research involved various studies and apps designed for
the general population with the aim of self–health care
management. Most of these apps were developed with a specific
focus, requiring users to download several apps to cover
different aspects. Therefore, multidimensional well-being apps
that combine multiple focuses need more research and
development as it is better to download a single app with a set
of features than to download several apps.

Furthermore, we found that the development of self-management
mHealth apps required significant efforts from researchers to
build and evaluate new algorithms and from developers to deal
with different techniques and frequent updates of apps to stay
up to date with the latest technologies. A parent example is
developing apps with ML algorithms, which comprise several
steps implemented manually, including collecting data,
extracting features, and applying several ML algorithms to
determine the most accurate algorithm. For example, the authors
of S7 compared 7 classifiers: support vector machines, naïve
Bayes, K-nearest neighbor, decision trees, LR, NNs, and
rule-based classifiers. Furthermore, many other studies manually
compared multiple algorithms to find the best algorithm,
requiring a long time and great effort from researchers. Another
example is the development of the same app in different
languages and techniques to be compatible with multiple
platforms.

In contrast, mobile devices are handheld gadgets with limited
resources (eg, storage, computational power, and battery
energy), which significantly hinders the improvement of service
qualities such as ML algorithms that require dealing with
intensive data and heavy computations. Connection with remote
services such as the cloud can address these limitations.
Therefore, many apps that used ML algorithms followed a
web-based inference to achieve optimal performance within a
reasonable time. However, this approach is generally insufficient
when the connection is lost and may pose security issues.
Therefore, some apps integrated a pretrained model with the
mobile app (offline inference), which may cause some difficulty
when updating the models. Only 4% (2/52) of apps supported
both web-based and offline inferences for the same functionality
but with lower performance and high energy consumption.
Consequently, many challenges still exist related to finding an
adequate algorithm that fulfills the specific requirements of
intelligent self-management mHealth apps, as well as an efficient
architecture that supports web-based and offline inferences with
the ability to reduce resource consumption and execution time
and increase performance, specifically when using large ML
algorithms.

Threats to Validity

Threats to Internal Validity

Instrumental Bias

To ensure the consistency of our evaluation results, all
evaluation processes in the second and third phases were
performed in the same manner by the first author. The evaluation
in phase 2 was applied to the same app on both Android and

iOS platforms. Furthermore, the evaluation process of phase 3
was repeated to double check the results.

Selection Bias

To ensure that we adopted unbiased and consistent procedures
in the selection, we used the quasi–gold standard approach [4],
which includes manual and automated search strategies, as well
as snowballing. We selected the highest-quality peer-reviewed
papers published in 7 web-based digital libraries. We further
complemented our research with snowballing to capture as many
studies as possible and minimize the potential for missing any
relevant studies.

Threats to External Validity: Generalization to Different
Samples
We reviewed studies that involved the implementation of a
research study from 2008 to 2020. However, the generalizability
of our findings could be affected by the exclusion of studies
that presented theoretical research without implementation, as
well as studies and apps linked with external devices.

Threats to Construct Validity
The RQs of this review could not entirely cover all of the
reviewed research papers and self-management mHealth apps.
Some research papers and apps had fewer or more details than
the information identified in our RQs.

Threats to Content Validity

Relevance

To comprehensively identify the characteristics and issues of
the selected studies, we divided the review into 3 main phases
using different data sources, including research papers,
commercial apps from digital Apple and Android app stores,
and open-source apps from GitHub.

Representativeness

In phases 1 and 3, we selected mobile apps developed with
either Kotlin or Swift on the Android and iOS platforms,
respectively. These apps had a wide range of functionalities and
purposes related to self–health care management.

Threats to Conclusion Validity
We extracted data from the assigned studies and
self-management mHealth apps from the app stores and GitHub.
To ensure the validity and consistency of the extracted data, the
protocol for the data extraction strategy and format was
developed by the first author and reviewed by the second author.
In addition, we created a Microsoft Excel file to record and
arrange the extracted data and check their relevance to our RQs.

Limitations and Future Work
This study had some limitations. The review was prepared and
reviewed by 2 authors; however, it would have been better if it
had more reviewers. In the second phase, apps were limited to
self–health care management and included only those available
in both Android and iOS digital app stores. The review would
be more comprehensive if phase 2 included other categories of
self-management mHealth apps, and phases 1 and 3 included
other programming languages, such as Java and Objective-C.
Furthermore, the review might have been more generalizable
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if it included an app designed for children and people with
special needs.

Developing mobile apps requires significant effort because of
the complexity of self-management mHealth apps. Therefore,
we have started the development of a framework that accelerates
and facilitates the development of mHealth apps [82,83]. The
framework semiautomatically generates Android and iOS mobile
apps and will be enhanced with frequent characteristics that
resulted from this review, such as tab structure, predefined
components of ML algorithms, and local and external services.
Moreover, the framework supports both web-based and offline
inference, which appears to be a limitation of current
self-management mHealth apps that usually support one of
them, as the web-based mechanism could lead to unusable apps
if the connection is lost, whereas the offline mechanism requires
updating the entire app with each algorithm enhancement and
library update.

Comparison With Prior Work
Several SLRs have been conducted on mHealth apps. For
example, in the study by Mosa et al [84], the authors classified
the functionalities of mHealth apps. They found that
smartphones were useful tools for self–health care and clinical
communication. Furthermore, smartphones can be used for the
remote monitoring of patients, disease self-management, and
patient education. In the study by Dounavi and Tsoumani [85],
the authors described the effectiveness of mHealth apps in
facilitating weight management behaviors by following healthy
food consumption and physical activity. They found that
mHealth apps are considered easy to use and useful in achieving
weight loss because they involve users in the treatment plan,
thereby increasing their commitment. These studies focused on
mobile apps from a health care perspective. In contrast, our
focus was on the software engineering perspective to identify
the characteristics and challenges of mHealth apps, helping
developers and researchers understand the infrastructure and
functional and technical aspects of mHealth apps. Another SLR
[86] focused on examining and identifying the empirical
usability evaluation processes of mHealth apps. They stated
that these processes could be improved by adopting automated
mechanisms and combining >1 evaluation method. Furthermore,
they demonstrated the importance of adapting mHealth apps
according to user requirements.

This study aimed to conduct a comprehensive review and
evaluation of self-management mHealth apps. This study
gathered empirical evidence from the literature to identify the
characteristics and challenges of existing self-management
mHealth apps focused on self–health care management. The
main contribution of this research is its detailed analysis and
synthesis of relevant literature by software engineering
researchers to deeply understand state of the art and provide
guidance for the development of complex self-management
mHealth apps.

Conclusions
In this research, we presented the details of an SLR on
self–health care management mobile apps that consisted of three
main phases. The results of this research can serve as a basis
for researchers and developers to understand the characteristics
of self-management mHealth apps and know the existing
challenges that require further research. In phase 1, we reviewed
44 studies published between 2008 and 2020. In phase 2, 42
apps were reviewed and evaluated using the MARS. In phase
3, we reviewed and evaluated, using SonarCloud, 24
open-source apps from GitHub, including both iOS and Android
platforms.

The research papers in phase 1 presented many interesting ideas,
used different ML algorithms, and supported automatic logging
mechanisms. These algorithms were used to process data to
automatically recognize physical activities; diagnose diseases;
recognize the types, quantities, and calories of food; and predict
the user’s emotion. However, the results of phase 1 show the
need for optimization of the architecture and algorithm of
intelligent self-management mHealth apps to efficiently include
web-based and offline inferences, reduce resource consumption,
and increase performance.

In phases 2 and 3, we found that most apps in app stores and
GitHub focused on monitoring and analysis functionalities that
use calculation methods to create progress reports and charts.
However, the quantity of food consumed, exercise, and emotions
should be entered manually. They lack automatic recognition
of the type and quantity of food or activities. As a result, some
advanced features exist in research papers but not in app stores
and open-source apps, which may indicate that these features
are still under research and development. Subsequently, the
apps of phases 2 and 3 might need some improvement to keep
pace with the advancement of research.
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Abbreviations
API: application programming interface
LR: logistic regression
MARS: Mobile App Rating Scale
mHealth: mobile health
ML: machine learning
MVC: model-view-controller
NN: neural network
OS: operating system
RQ: research question
SLR: systematic literature review
UI: user interface
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