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Abstract

The health care management and the medical practitioner literature lack a descriptive conceptual framework for understanding
the dynamic and complex interactions between clinicians and artificial intelligence (AI) systems. As most of the existing literature
has been investigating AI’s performance and effectiveness from a statistical (analytical) standpoint, there is a lack of studies
ensuring AI’s ecological validity. In this study, we derived a framework that focuses explicitly on the interaction between AI and
clinicians. The proposed framework builds upon well-established human factors models such as the technology acceptance model
and expectancy theory. The framework can be used to perform quantitative and qualitative analyses (mixed methods) to capture
how clinician-AI interactions may vary based on human factors such as expectancy, workload, trust, cognitive variables related
to absorptive capacity and bounded rationality, and concerns for patient safety. If leveraged, the proposed framework can help
to identify factors influencing clinicians’ intention to use AI and, consequently, improve AI acceptance and address the lack of
AI accountability while safeguarding the patients, clinicians, and AI technology. Overall, this paper discusses the concepts,
propositions, and assumptions of the multidisciplinary decision-making literature, constituting a sociocognitive approach that
extends the theories of distributed cognition and, thus, will account for the ecological validity of AI.
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Introduction

With the growth of multidisciplinary and collaborative health
care [1], clinicians have more information and expertise to
inform clinical decision-making than ever before [2].
Nevertheless, when confronted with information and knowledge
that are (1) not always within the scope of the primary or focal
expertise of a clinician and (2) in such quantities that it becomes

difficult for the clinician to process reliably and validly and in
a timely manner, clinicians can often resort to boundedly rational
and, in some cases, incorrect diagnoses, treatment, and other
clinical decisions [3]. A response to the interrelated problems
of the clinician’s limited absorptive and cognitive capacities
has been the integration of artificial intelligence (AI) into health
care decision-making [4-6]. However, technological solutions
to the problem of limited absorptive and cognitive capacities
in multidisciplinary, complex, and collaborative decision-making
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can introduce new situations [7]. For example, team science in
clinical settings can come with competing diagnoses and
prescriptions for treatment and wellness [8,9]. Furthermore,
when new technologies for decision-making are imposed from
above (eg, by management, rather than organically) or from
below (eg, at the clinician level, clinicians may not always trust
or intend to use those technologies) [10].

The problems regarding trust in AI and the use of AI systems
in clinical decision-making illustrate the classic distinction
between the rational and descriptive decision-making models.
Studies of clinical decision-making demonstrate that the rational
model of introducing integrative technologies, including but
not limited to AI, into clinical decision-making is not always
supported by the data. In other words, rational models of clinical
decision-making [6,11,12] and decision-making, in general, are
not ecologically valid; they assume perfect information, ideal
absorptive and cognitive capacity, optimal trust, and unlimited
resources to make a fully and correctly informed decision. The
descriptive empirical research demonstrates mixed effects
regarding technology-assisted decision-making in clinical
settings owing to limited cognitive capacity of the end user (care
providers), information overload or lack of data, and suboptimal
trust in the technology [7,13,14].

Similar to most technologies, AI can be a boon or bane within
the health care ecosystem. With increasing autonomous activities
in health care, challenges concerning AI and human factors may
manifest evidently at an individual level (eg, awareness and
trust), macrolevel (eg, regulation and policies), and technical
level (eg, usability and reliability) because many health care AI
applications are poorly designed and not evaluated thoroughly
[15]. Therefore, human factors and ergonomics (HFE)
consideration in health care AI systems has become necessary.
If leveraged while developing AI systems, HFE principles and
methods can augment its use and adoption without disturbing
patient safety or clinical protocols. Of all the possible HFE
challenges that AI in health care can cause, suboptimal
clinician-AI interaction is significant. Integration of poorly
designed AI in health care can complicate the relationships

between clinicians and computer (intelligent) systems. Unlike
other health care technologies, the complexity of AI is more,
as it can interact (through chatbots, automated recommender
systems, health apps, etc) with clinicians and patients based on
the inputs (feedback) that it receives from them. AI’s output
(result generated by the AI) largely depends on the information
fed into it—certain types of AI, for instance, reinforcement
learning [16], learn and adapt themselves based on user input
to optimize the outcome. Therefore, clinician-AI interaction
may influence AI performance and, in turn, the clinician’s
viewpoint toward it. Optimal and successful clinician-AI
interaction depends on several factors, including situation
awareness, cognitive workload, working environment, and
emotional resources (eg, current state of mind, willingness to
use AI, previous experience with AI technology, trust in
technology, and others). Most studies on health care AI have
ignored (1) ecological validity and (2) human cognition, which
may create challenges at the interface with clinicians and the
clinical environment. Moreover, there is a lack of sufficient
studies focusing on improving the human factors, mainly, (1)
how to ensure whether clinicians are implementing it correctly;
(2) the cognitive workload it imposes on clinicians working in
stressful environments; and (3) its impact on clinicians’situation
awareness, clinical decision-making, and patient safety outcome.
Although studies on AI have reported its great performance and
potential in medicine [17-19], research breakthroughs (AI
performance in research settings) do not necessarily translate
into a technology that is ready to be used in a high-risk
environment [20], such as health care. In addition, most AI
featuring prominent abilities in research and literature are not
executable in a clinical environment [21,22]. According to the
technology readiness level (TRL), most AI systems, at least in
pediatric and neonatal intensive critical care, if not all, do not
qualify for implementation [17].

TRL is a gauging system, developed to assess the maturity level
of a particular technology [23]. It consists of 9 categories
(readiness levels), in which a score of TRL 1 is the lowest and
TRL 9 is the highest (Textbox 1).

Textbox 1. Technology readiness levels (TRLs; 1-9).

Technologies with TRL 1-4 are executable in a laboratory setting, where the main objective is to conduct research. This stage is the proof of
concept.

• TRL 1: Basic principles of the technology observed

• TRL 2: Technology concept formulated

• TRL 3: Experimental proof of concept developed

• TRL 4: Technology validated in a study laboratory

Technologies with TRL 5-7 are in the development phase, in which the functional prototype is ready.

• TRL 5: Technology validated in a relevant environment (controlled setting in a real-life environment)

• TRL 6: Technology demonstrated in a relevant environment

• TRL 7: System prototype demonstrated in an operational environment

Finally, technologies with TRL 8 and 9 are in the operational phase, in which the primary objective is implementation.

• TRL 8: System completed and certified for commercial use

• TRL 9: System approved for and implemented in the actual operational environment
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For example, in clinical settings, nurses and physicians have
demonstrated lack of trust in AI, including machine learning
analytics and decision-making tools [7]; numerous other
information technologies designed to improve decision-making
efficiency and effectiveness, such as medication management
systems [13], event reporting systems [14], and electronic health
care records systems [24]; and clinical biotechnologies such as
gene therapy [25]. There are demonstrations of incorrect use of
clinical technologies, such as unwarranted trust and reliance on
automated nursing tools, leading to adverse health consequences,
including, but not limited to, avoidable fatalities [11] and
inappropriate use of medical devices inducing patient harm
[12,26]. It is critical to understand that the impact of AI,
particularly in health care, is not only a function of the accuracy
of its underlying mathematical process but also the cognitive
human factors, including trust, perception, usability, and safety.
Therefore, to minimize errors caused by health care AI (as noted
in other health information technology [HIT] literature, such as
electronic medical records), a holistic approach, recognizing
health care as a dynamic sociotechnical system in which
subelements interact, is necessary.

Objective

This study aimed to propose a descriptive conceptual framework
derived from cognitive human factors and decision-making
literature. Note that this framework is not a rational model.
Then, future studies can leverage this framework and inform
the eventual development of a prescriptive framework for
optimal AI-clinician interactions. The proposed framework can
be best used for mixed methods studies. In other words, the
descriptive conceptual framework will help to capture the
interactions between clinicians and AI. The prescriptive
framework (guided by experimental study findings) will help
to develop better AI-clinician interactions.

The novelty of the descriptive framework presented in this study
is that it uses systems thinking and combines multiple
descriptive (vs rational) human factors approaches to understand
clinician-AI interactions in decision-making. Although human
factors considerations in clinical decision-making can augment
the intended positive impacts of integrative decision-making
technologies such as AI, so far, there are few studies on how
and the extent to which clinicians use AI in diagnostic and health
care decision-making. In addition, the predominance of
empirical studies of AI in clinical settings focuses on the
technical aspects of AI-driven diagnostic and care
decision-making, that is, the plethora of machine learning
algorithms and high-dimensional data that AI entails [27]. The
few studies on human factors in the use of AI in decision-making
are not focused on clinical samples and contexts, but rather on
nonclinical applications in other industries and sectors of the
economy, including, but not limited to, military [28];
transportation [29]; and organizational design, in general [30].

Framework Development

The health care management and medical practitioner literature
lack a conceptual framework for capturing the impact of AI
from a systems perspective and simultaneously understanding

clinician-AI interactions that are ecologically valid, specifically
focusing on how such interactions may vary based on human
factors such as expectancy, trust, cognitive variables related to
absorptive capacity and bounded rationality, and concerns for
patient safety. To derive the conceptual framework, this study
leverages (1) literature on systems thinking and AI in medical
practice, (2) information use in human decision-making, (3)
trust and informing decisions with AI, and (4) patient safety
and informing decisions with AI.

Systems Thinking and AI in Medical Practice

Overview
Technological advancement and diffusion of innovation are
supporting an expeditious transformation in the structures and
institutions in veritably every facet of life, and medical practice
is no exception. Technologies can now facilitate the
accomplishment of activities that humans once considered
impossible and are responsible for substantial social and public
policy changes in health care. For example, Widmer et al [31]
discussed the convergence of health care policy reform in the
United States with technological advancements and social shifts
as support for the great use of AI in health care practice. They
argued that these are transformational forces that influence the
capacity to develop complex solutions to problems in medicine.
These solutions are in the form of technologies that often rely
on AI to support decision-making. Qadri et al [32] surveyed the
current landscape of new health care technologies, uncovering
the ubiquity of AI and tools dependent on AI in medicine. For
example, the impact of the health care Internet of Things on
health care information technology has been substantial [32],
as the immensity of technological innovation relentlessly pushes
forward as systems become increasingly smart and widespread.
As these systems become an integral part of health care, systems
thinking will become increasingly essential because of the
complex nature of the task-technology fit required in health
care.

The health care industry has witnessed several design errors in
both technologies and clinical workflow. Integrating HITs that
are not designed and not tested properly is highly likely to
contribute to new categories of technology-induced errors, often
new to the health care domain. Such errors usually manifest in
the complex interaction between health care providers and HIT
during actual clinical use. For example, in the recent past,
surgical robots were responsible for 144 patient deaths and 1391
patient injuries [33]. Once integrated, such technologies can
also alter the existing clinical workflow. For example,
integration of AI into the clinical workflow without considering
its impact on clinicians, patients, hospital expenses, workflow
speed, insurance claiming process (previous authorization), and
other aspects can disrupt the overall care process. For example,
given the dependence of AI on data, it is feasible to assume that
even the best AI systems will sometimes be wrong, leading to
compromised patient safety. Although clinical errors and near
misses are common in health care, AI errors can be significantly
unique. First, errors arising from AI systems can become
widespread without being identified by clinicians, causing
system-wide error—rather than the limited number of patients
injured by any provider’s error. Second, tracking AI errors can
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also become highly challenging, mainly when powered by deep
learning algorithms. Such a complex system (AI) can make root
cause analysis very daunting and almost impossible owing to
its inherent opaque nature. The performance of AI systems
largely depends on the data on which they have been trained.
As the existing data repositories are biased, AI integration
without addressing issues regarding data quality can escalate
health care biases.

Health care authorities must account for several extrinsic factors
such as clinicians’willingness to use AI in their clinical practice,
access to the duration and frequency of AI training required by
clinicians with different expertise, and feasibility of
personalizing AI for individual clinicians and patients. In
addition, doctors and nurses, the potential users of AI in a
hospital, can also misuse the system either owing to lack of AI

literacy or poor usability of AI. Therefore, a systems thinking
approach is essential for the safe integration of AI.

In addition, AI-based technologies may not work well for
patients with rare diseases, as their data are not adequately
available. Health care authorities will also have to ensure that,
over time, clinical experts do not become deskilled or
permanently replaced owing to AI implementation. In other
words, safe and sustainable integration of AI requires a systems
approach in which all interactions between different health care
stakeholders are considered.

Similar to any complex system, subsystems of health care and
AI can be shaped by several factors at three major levels: (1)
governance—policies, regulations, and protocols; (2)
organizational [34]—accountabilities, resilience, ecological
validity, and feasibility; and (3) individual—trust in AI and safe
practices (Figure 1).

Figure 1. Factors influencing the use of artificial intelligence in health care—a systems viewpoint.

Governance Level
In this study, AI governance has been defined as a group of
systems that regulate and control AI within the large health care
ecosystem. It steers organizational objectives and risk
monitoring to achieve optimized performance. In other words,
AI governance is a system of systems that requires a holistic
approach, incorporating strategic planning at all organizational
levels. Existing studies have confined health care AI governance
within the boundaries of organizational structure and processes
for clinical decision-making, transparency without exploiting
proprietary rights, fairness of the technology, and accountability
[35].

Nevertheless, many critical factors have not been considered.
Resilience; ecological validity; protocols for safe practices using
AI; engagement; and responsibilities of stakeholders, including
insurance providers; and human factors should also be included
as significant components of health care AI governance. Systems
thinking in health care can help regulatory authorities and
organizations to perceive the integration of AI and health care
as a merger between 2 complex systems. In other words, a
systems approach will allow us to capture and understand how
the dynamic relationships between various factors, such as
policies and protocols, impact the resilience and feasibility of
the incorporation of AI into the health care ecosystem. Clearly
defined policies and protocols and involvement of all
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stakeholders will also help to resolve the current concerns
regarding AI accountability—who should be responsible for a
flawed AI system or incorrect AI output? From a human factors
perspective, the systems approach can advocate for the
ecological validity of AI, ensuring that the technology is
appropriately designed and developed for a given uncontrolled
environment. Addressing these concerns can increase the
likelihood of AI acceptance among clinicians, by augmenting
their initial trust in the technology.

Organizational Level
Further expanding on the subcomponents of Figure 1, AI
governance in health care should account for (1) resilience
thinking approach, (2) accountability, and (3) ecological validity
of AI. Resilience thinking is a holistic way of investigating how
interacting systems of clinicians and clinical environment,
including AI technologies, can be best managed during
uncertainty or systemic errors.

This study defines AI accountability as a process in which health
care practitioners have potential responsibilities to justify their

clinical actions to patients (or families) and are held liable for
any impending positive or negative impact on patient health.
While using an AI-based decision support system, only
clinicians are held accountable if they decide to follow AI,
resulting in patient harm. Clinicians are also held responsible
if they deviate from the standard protocols [36]. This may be
worrisome because, under such circumstances, clinicians will
only follow AI if it matches their judgment and aligns with the
standard protocol—making the AI underused. According to our
recent survey (institutional review board 2022-007 approved
by the Stevens Institute of Technology, the United States)
consisting of 265 clinicians actively practicing in the United
States, lack of AI accountability is a significant hindrance to
AI adoption in health care. Clinicians hesitate and refuse to use
AI as they do not want to take responsibility for faulty AI.
Participants in our survey advocated for contractual agreements
with patients and policies to safeguard them from AI errors and
related patient safety issues. Textbox 2 shows some of the
responses provided by clinicians.

Textbox 2. Solutions provided by health care practitioners to address the lack of artificial intelligence (AI) accountability—categories and sample
responses.

Contractual agreement with patients

• “I think a solution would need to be having patients sign informed consent for AI to be used in their care and that decisions made by the AI
cannot reflect on the provider’s care.”

• “AI should only be used if a patient is willing to fill out a questionnaire regarding the pros and cons of using AI and the potential harm or good,
releasing the practitioner along with the potential outcome they may or may not achieve.”

• “[I] think the patient should sign a waiver if AI is used.”

Policies and safety measures

• “Use it in conjunction with training and safeguards that are in place now.”

• “The use of AI would need to be regulated. The manufacturers should take full responsibility for any negligent or bad decisions about patient
care.”

• “[I] would not want to be held accountable for AI recommendations. Creating policies to protect clinicians would be important.”

Being a complex system, subsystems of health care
establishments are shaped by several internal and external
factors. This complexity of the health care system can be well
explained by using human factors approaches such as the Safety
Engineering Initiative for Patient Safety (SEIPS) framework
[37]. Developed by Carayon et al [37], the SEIPS framework
is partly based on the well-known structure-process-outcome
model of health care quality by Donabedian [38]. It is arguably
one of the most acknowledged and published systems-based
human factors frameworks in health care. SEIPS framework
illustrates the dynamic interactions between people (patients
and clinicians), technology (AI in this context), tasks (clinical
activities to support patient safety and health), and environment
(clinical and organizational setting). However, no studies have
used the SEIPS framework to understand the impact of AI on
health care from a systems perspective.

Individual Level
Diligent scrutiny is essential for medical practitioners when
considering the application of new technologies in patient care.
There are limitations to the benefits of AI in medical practice.

Failing to acknowledge them when engaging in innovative
decision-making, especially when human lives are at risk, can
result in system accidents. Research [39] has discussed the
limitations attached to AI application in medicine, focusing on
its application in oncology. They noted that machine learning
plays a substantial role in oncological practice. Machine
learning, which is a subset of AI, involves computers’ ability
to learn autonomously through data input [39]. In oncology,
benefits of machine learning include application in risk
modeling, engaging in diagnostic and staging investigation,
prognosis prediction, and therapy response prediction.
Limitations persist when using AI, such as costs,
overdependence on data quality, black box effect, and obtaining
trust in and acceptance of machine learning technology [39].
Mendelson [40] echoed some of the limitations discussed by
Khan et al [39], noting that physicians cannot rely on AI alone
when making decisions about the findings from breast imaging
examinations. Mendelson [40] described the preferred role of
AI as being supportive of diagnosis and patient management.
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Although physicians and researchers describe several limitations
to accepting AI owing to its analytical abilities and biases, other
human factors have often been neglected. Although the
refinement of methods and procedures used in AI for
decision-making continues to advance, further exploration of
leveraging human factors principles is mandatory. The solution
to safeguard AI and patients is in the acceptance of systems
thinking approach to medical care, in which physicians
incorporate AI in a role that is, as Mendelson [40] noted,
supportive in nature. As described by Khan et al [39], the
problem of trust with AI appears to be well founded because of
the black box effect, in which the AI delivers results with a
solution; however, the rationale for the solution cannot be
described. Hashimoto et al [41] noted that although the black
box effect exists, efforts are underway to design solutions that
can mitigate it in medical practice. The black box results
obtained from neural network methods can lead to the correct
response [41]. However, physicians cannot rely on the results
from AI alone at this point, when making decisions that have
life-or-death implications for patients. The system cannot
explain itself. Although physicians can learn more about AI to
understand the results better [40], the problem of human trust
in AI remains challenging because the design of AI does not
support transparency [40]. Hence, the limitations of AI are not
based on AI alone, but they are based on the relationship
between AI and its users’ lack of understanding of the
technology. Not all the trust needed to rely on AI can come from
better design features. Some must come from great acceptance
of the technology, and the interdisciplinary nature of systems
thinking can play a role in improving the relationship between
humans and AI in medicine. However, it is essential to keep in
mind the dynamic nature of trust, where the user needs to have
a priori trust in technology to use it for the very first time.
Moving forward, their trust in it can become a function of their
experience with the technology and its effectiveness.

In addition to the possibility of patient harm caused by
disruption to health care delivery, the complexity of how
systems fit together can result in system accidents. Kappagoda
[42] discussed the problem of system accidents in aviation to
illustrate the potential for problems when there are design
deficiencies, poor maintenance practices, and failures in
oversight. Similarly, poor AI design in health care can lead to
patient harm, where clinicians can misinterpret AI information
or click on the wrong option on the AI display. Inadequate
maintenance, that is, not retraining the AI with new patient data,
can compromise its prediction accuracy, and thus hinder patient
safety [43]. In addition, sometimes, bedside care providers make
clinical decisions that do not necessarily fall within the standard
guideline (for specific patient types) or skip the prescribed
clinical steps (under excessive workload) to accomplish a
particular clinical goal promptly [44]. Therefore, AI developers
should account for such human behavior while designing their
products, so that AI can serve as a support and not as a hurdle
in the everyday clinical workflow.

Some assurances related to medical devices exist in the United
States. These include the International Organization for
Standardization 13485 quality standards for medical devices
[45] and 21 Code of Federal Regulations 820.3(l) [46]. Although

these certifications and regulations exist to protect patients,
medical personnel can still preside over a case in which system
accidents harm a patient. Hence, although AI can be
substantially beneficial to patients and be a helpful tool for
supporting the staff's decisions, medical professionals must
engage in systems thinking when assessing care strategies.

Information Use in Human Decision-making
The motivation to use or not use certain information in
decision-making is complex, and several theoretical
perspectives, such as Situation Awareness and Expectancy
Theory, can support the understanding of this motivation. Soltani
and Farhadpour [47] investigated user motivation toward using
information services. The framework for their study was the
expectancy theory. They found that user motivation to use an
information service was significantly influenced by awareness
of results value and perceptions of the accessibility [47].
Although expectancy theory appears to play a role in describing
why AI is used or not used, other human factors can support in
predicting user behavior. O’Reilly [48] examined the variations
in the use of information sources to understand the impact of
quality and accessibility of information as factors influencing
its use. O’Reilly [48] found that the frequency of use was the
most significant influencer of use.

The association of absorptive capacity with the ability to use
information is another essential facet of the psychology of
decision-making. Results from the study by Liao et al [49]
indicate that absorptive capacity has an impact on innovation,
but information use aimed at innovation was found to be
complicated [50]. Schmidt [50] discovered that the determinants
of absorptive capacity are different, depending on the type of
knowledge absorbed. Therefore, absorptive capacity is
path-dependent in how it leads to information use. This is a
complexity that constrains decision-making. In decision-making
research, perceived relevance of and access to information are
critical to understanding information use. One of the first studies
to understand the effects of information relevance on
decision-making in complex environments was by Streufert
[51]. The framework for her study was the complexity theory.
She noted information relevance as a factor that affected
complex decision responses, but the same element (information
relevance) failed to influence simple decision responses [51].
These findings are critical to understanding the significance of
information in decision-making research because they support
the essential nature of situation awareness among decision
makers. Her conclusion that complex decision-making is affected
by relevance and simple decision-making is affected by
information load—is a critical finding, placing some limitations
on the complexity theory. Citroen [52] explored the role of
information in strategic decision-making by executives in
organizations. The approach requires executives to collect and
use information in a structured process that supports the
elimination of uncertainty in the decision-making process. The
findings of Streufert [51] and Citroen [52] support the role of
situation awareness as a factor that influences information use
among decision makers.

The acceptance of information in decision-making is another
pivotal factor in decision-making research. According to a
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well-established model called technology acceptance model,
acceptance is associated with ease of use and usefulness in
decision-making [53]. The inclusion of information in
decision-making would appear to be important. However, its
inclusion and tools such as decision support systems remain as
a challenge for decision makers. Todd and Benbasat [54]
examined the use of information in decision-making. Their
study was critical of assuming that managers who have more
information will make better decisions. They found that the
conservation of effort occurred when managers were presented
with more information. Tools such as decision support systems
did not result in a great likelihood of information being used in
the decision-making [54]. These findings can have substantial
implications for studies on human decisions formed by AI,
because AI often involves aggregating several piles of data to
construct a comprehensive understanding of the phenomenon
under investigation. However, if what Todd and Benbasat [54]
proposed is consistent with decision makers’ current approach
to information, the aggregation of data to create elegant models
to understand a phenomenon will go in vain. Studies exist on
why individuals choose to rely on information systems for
decision-making. Snead and Harrell [55] examined the decisions
by the management to use decision support systems using
expectancy theory. The findings indicate that the expectancy
force model can determine managerial behavioral intentions to
use decision support systems [55]. Behavioral theory is helpful
for these studies because it can support the assessment of why
people use systems without previous experience with them
based on intention and motivation.

Absorptive capacity is associated with the use of AI, and the
findings from AI are critical. Absorptive capacity is also
essential in decision-making related to innovation and depends
on how a user optimizes information system capabilities.
Moreover, absorptive capacity also impacts AI in terms of
industry innovation. A limitation of AI use is the lack of user
understanding of tools or substantively interpreting findings.
Shi et al [56] discovered that AI use creates challenges in terms
of limitations, such as limited knowledge transfer. The extent
to which workers are trained to use AI tools and interpret their
findings is limited. Therefore, absorptive capacity in business
settings where AI is used is limited by workers’ capabilities.

The knowledge and relevance of AI are also essential to consider
while supporting decision-making. Prevedello et al [57]
examined the challenges of AI use in medical settings. They
noted a difference between expectations and AI application in
clinical settings where AI’s role in tasks, such as radiology,
would expeditiously advance purely from a technical standpoint
without addressing all the user needs from a human factors
perspective. Prevedello et al [57] noted that AI should be a part
of developing clinically relevant outcomes and that AI should
play a role in decision-making in the future. However, this is
also a prediction that Prevedello et al [57] found to have gone
unfulfilled from previous studies. Pomerol [58] discussed the
issue of AI and human decision-making. He described AI as
sharing several relationships with other types of quantitative
analytical procedures in that each is useful in diagnosis. He also
noted that a critical limitation of AI was the lack of capacity

for look-ahead reasoning, where uncertainty and preferences
are crucial factors to consider [58].

Acceptance of AI in decision-making is a critical technological
concept in which the ease of use and usefulness of AI is
examined and determined. The use and benefit of AI in
decision-making are substantially challenged by lack of
knowledge of the technology or its potential capabilities. Chan
and Zary [59] discussed the applications and challenges of AI
implementation in medical education. One of the major factors
restraining AI use in the medical profession is that the medical
school curriculum fails to develop future medical professionals
to understand AI algorithms [59]. The lack of knowledge and
development results in limited use of the tool. A critical
limitation to the use of AI in the future appears to not be caused
by the constraints or complexities of the technology, but instead
by the decision to use the technology by humans [59]. Sohn and
Kwon [60] examined several technology acceptance theories
to understand which framework best fits the acceptance of AI.
Their study included the technology acceptance model, theory
of planned behavior, unified theory of acceptance and use of
technology, and value-based adoption model. The findings
supported the value-based adoption model as the best model to
determine user acceptance of AI. Specifically, the factors found
to have the most significant impact were enjoyment and
subjective norms [60]. These findings provide evidence that the
motivation to use AI is driven more by interest in technology
than the utilitarian aspects of AI.

Trust and Informing Decisions With AI
Trust in technology is influential in several contexts, including
those where computer-mediated communication is used for
work team communication [61], supporting customers or clients
engaging in electronic channels, e-commerce [62], and aviation
activities [63]. Trust in technology delineates from trust in
humans in many different ways [64,65], in that trust in humans
is associated with interpersonal relationship qualities. In contrast,
trust in technology is associated with reliability and
performance. Nevertheless, trust remains an important aspect
of the human experience in technology [65].

Trust in technology appears to be consistent with theories such
as the expectation disconfirmation theory. This theory is related
to the satisfaction an individual has with experience related to
whether their beliefs were confirmed during an experience and
how expectations and perceived performance affected their
initial beliefs [66]. Trust in technology is complex for many
reasons. A reason for the complexity of trust in technology is
that there are risks and uncertainties associated with technology.
Li et al [67] examined trust in new technology in the context
of the workplace. They found that initial trust formation relies
on several factors, including trusting bases, beliefs, attitudes,
organization’s subjective norms, and trusting intentions. Other
studies involving technology assume that trust in technology
can be formed through governance in the organization. Winfield
and Jirotka [34] discussed the development of a framework for
ethical governance, pertaining to robotics and AI systems in
organizations. Factors that were considered included ethics,
standards, regulation, responsible research, innovation, and
public engagement. These factors were deemed essential in the
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development of trust between the technology and public. The
problem with this approach is that it does not consider human
factors such as users’ perception of technology, perception of
risk associated with it, and its impact on users’ cognitive
workload and situation awareness.

Most relevant to this research is the issue of trust in medical
technology. Montague et al [68] examined trust in medical
technology and sought to describe medical technology as a
distinct construct from trust in general technology. A review of
the literature on trust in technology was included in their study.
Their literature discussion included the assertion that previous
study findings support a lack of difference between trust in
humans and trust in technology. However, McKnight et al [64]
and Lankton et al [65] have included findings and discussion,
which indicate a substantial difference between trust in humans
and trust in technology. The difference in the findings supports
further investigation. The existence of an entirely separate
construct describing or measuring trust in medical technology,
aside from trust in general technology, should not be considered
in subsequent studies to conclude whether a separate construct
exists. However, it is beyond the scope of this study.

Specifically, trust in AI remains as an important issue and will
grow significantly with time as AI becomes increasingly infused
into the products we use in everyday life. AI continues to create
some difficulty among researchers regarding how AI should be
trusted. AI uses large amounts of data to support decisions that
receive attention and consideration based on strong
predictability, while not mimicking humans’ thought processes.
Hurlburt [69] discussed AI as a technology that continues to
increase its reach and that people have become increasingly
dependent on the use of AI in their everyday lives. The problem
is that, often, there is lack of consideration as to whether AI is
capable of doing the job it was selected to perform.

Furthermore, vulnerabilities with AI continue to persist. Hurlburt
[69] noted that AI should be trusted only to a certain extent.
However, the consideration and act of trust toward selecting AI
to complete tasks is better suited for the individual evaluating
the AI tool than the task itself.

We also advocate for some level of skepticism regarding the
decisions made by AI. The amount of skepticism necessary for
the most accurate clinical decisions depends on the capability
of the clinician and AI system. Suppose the benefits and
constraints of an AI tool are understood. In that case,
decision-making about whether to use the tool entails placing
trust (binary in nature), rather than considering the extent to
which a tool with predefined specifications can be trusted. The
authors’ effort to analogize trust in AI with trust in humans is
remarkable in the literature on AI involving trust. For example,
in the study by Hengstler et al [70], trust in AI used in tools
such as autonomous vehicles and medical assistance devices
was investigated [70]. They sought to draw an analogy between
applied AI in vehicles and human social interaction [70]. Their
focus was on understanding the relationship between humans
and automation, to understand how trust is built. They concluded
that trust in AI is inextricably linked to the trust that individuals
have in the firm that created the AI. The philosophical approach
to this research is very different from that of researchers

examining trust in technology in general [64,65]. The focus of
researchers was on establishing that trust in technology and
trust in humans are entirely different concepts. Therefore, the
nature of AI as a form of intelligence designed to be similar to
human intelligence can affect how AI is considered, even in
scholarly research.

People’s trust in AI shares commonalities between trust
formation in automation (non-AI technology) and interpersonal
trust (trust in humans). Glikson and Woolley [71] discussed
previous studies involving human trust in AI. They noted that
there are critical differences between AI and other technologies,
which impact how trust forms and works, similar to both human
and technology trust. Cognitive and emotional trust in AI are
related to both the representation of the AI, whether robotic,
web-based, or embedded, and the level of intelligence of the AI
system. These factors are integral to establishing people’s
cognitive and emotional trust in AI. In the scope of AI use in
health care, the conceptualization of AI as having some
anthropomorphic qualities becomes increasingly visible.
Kerasidou [72] examined the use of AI in health care, focusing
on the issues of empathy, compassion, and trust. She noted that
these are characteristics that people should not value in AI.
However, AI in medical treatment plays a role where AI
completes several tasks that humans traditionally complete. The
technology must be task-oriented and support humans in health
care by performing more activities related to the emotional and
comfort aspects of patients’ treatment. Together, these findings
contribute further support for AI, where the tool can fill a
supportive role and enable humans to hold a position where
trust would be beneficial to their health care delivery.

Patient Safety and Informing Decisions With AI
The most fundamental aspect of medical care is the promise of
physicians to not harm (patient safety). The Hippocratic Oath
is the standard that health care professionals must follow when
working with patients. Therefore, understanding how AI impacts
patient safety is critical for this study.

Health care AI studies have positively contributed to drug
development, personalized medicine, and patient care
monitoring [73-76]. AI has also been incorporated into electronic
health records to identify, assess, and mitigate threats to patient
safety [77]. Recent studies and reviews have primarily focused
on the performance of AI at the diagnostic level, such as disease
identification [78-83], and AI robotics in surgery and disease
management [84-87]. Other studies have also implemented AI
technologies to assist at the clinical level, including for assessing
fall risks [88] and medication errors [89,90]. However, many,
if not all, of these studies have not implemented AI in a clinical
setting or have been used by clinicians for routine clinical
activities. Therefore, we noted a lack of evidence that can
confirm the positive impact of AI on patient safety outcomes
in real life.

The impact of AI on patient safety substantially depends on
how clinicians correctly comprehend AI output (information
and recommendation) and accordingly make clinical decisions.
In other words, misinterpretation of the AI output may mislead
clinicians and encourage them to make wrong clinical
decisions—putting patient safety at risk. With the integration
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of AI, the role of technology shifts from merely delivering
information to information identification and decision-making,
therefore, enunciating the importance of clinician-AI interaction
and collaborative decision-making. Most decision-making
literature in the context of health care focuses on shared
decision-making (clinician-patient) and its impact on patient
safety. However, no studies have considered the significant role
that AI can play in clinical decision-making (clinician-AI) and
patient safety. Woolf et al [91] believed that an informed choice
should occur in an interpersonal manner. Légaré et al [92] also
discussed the importance of increasing the use of shared
decision-making.

Nevertheless, the critical findings of health care decision-making
literature may also apply to AI-based decisions. For instance,
Edwards et al [93] found that in shared decision-making between
the patient and clinician, the patient’s degree of health literacy
determined their ability to understand their treatment (creating
a shared mental model between the clinician and patient).
Similarly, clinicians’ AI literacy will assess their ability to
comprehend AI outcomes and make informed clinical decisions,
thus ensuring treatment adherence and safety.

The importance of information interpretation and analysis, in
general, has been well acknowledged in the literature [94]. For
example, Tuffaha et al [95] discussed using the value of
information analysis in health care as a model to support health
care decision-making approaches. The value of the information

analysis approach supports the measurement of decision
uncertainty and assessment of the evidence’s sufficiency to
support technological implementation. Bindels et al [94]
supported the use of the value of information analysis in health
care decision-making. Although the value of information
analysis is a practical approach to decision-making, there is a
lack of implementation of AI and studies analyzing its impact
on clinical decision-making and patient safety. These findings
provide evidence that the issue of safety must receive further
focus in the form of empirical research to inform patient safety
and informed decisions regarding AI. The current body of
research includes a rich collection of studies focused on using
AI in tasks and decision support roles where the potential exists
that users or those dependent on AI use are at risk of possible
harm from AI technology.

The Proposed Framework

On the basis of the literature discussed previously, this study
proposed the following conceptual framework (Figure 2). The
framework emphasizes clinicians’ cognitive functions and
perceptions regarding AI, concerning their trust in the
technology along with perceptions of patient safety (risk). In
addition, the framework emphasizes the cognitive functions of
situation awareness, workload, expectancy (performance and
effort), trust, patient safety, clinicians’perceptions of AI, and
perception of AI accountability.

Figure 2. Ecological validation of artificial intelligence—trust, safety, and decision-making using artificial intelligence.

To explore this conceptual framework for describing
clinician-AI interactions in clinical decision-making, each
independent variable has operational precedent in the cognitive
human factors and behavioral economics literature. There are
numerous measures of situation awareness, including, but not
limited to, the 3-level model of Endsley, perceptual cycle model
[96], and activity theory model [97]. Similarly, workload has
numerous and moderately competing operationalizations based

on profession or occupation, including, but not limited to,
scientific and clinical jobs and occupations [98,99]. Regarding
perceptions of AI, there is relatively less precedent operationally
[100,101]. Similar to the independent variables in the descriptive
model of clinician-AI interactions, the dependent variables of
trustin AI and perceptions of patient safety have numerous
operationalizations across the computer science and health care
literature [102,103].
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Accordingly, the framework constitutes a sociocognitive
approach that extends the theories of distributed cognition and,
thus, accounts for the ecological validity of AI. The model
leverages the measures that the studies reviewed in the previous
sections imply (and often explicitly state), which must be
included to understand the ecological validity of any model of
human-AI interactions in decision-making. These validated and
well-established scales include the modified National
Aeronautics and Space Administration’ task load index [104],
extended unified theory of acceptance and use of technology
model [105], multi-item and previously validated scales for
trust [106], and Mission Awareness Rating Scale [107] for
situation awareness [108]. Inherently, cognitive workload and
situation awareness are operationalizations of bounded
rationality [109], and expectancy and perceptions are
operationalizations of motivation and risk, respectively [110].

The real-life decision-making process deviates from the
neoclassical or rational model of decision-making, which
assumes perfect information and unlimited absorptive capacity,

time, energy, and other resources—as implied in the framework.
The underlying theory for the model is the expectancy-value
theory of motivation, which posits that the probability of a
specific decision to behave in a particular way (ie, AI-derived
decision by a clinician) is dependent on the extent to which the
decision maker believes that the specific behavior will elicit an
intended outcome (ie, patient safety). The model can be
illustrated differently based on the quantitative modeling of
future researchers. The framework highlights the shaping factors
that are likely to influence clinicians’ willingness to use an AI
system. The framework captures the way in which the factors
influence clinicians’ intention to use AI in their clinical
workflow. In other words, future researchers can leverage this
framework to explore the factors that influence clinicians’
cognitive function regarding the use of an AI system and,
consecutively, impact the perception of patient safety or risk,
trust in AI, and intent to use the technology. Subsequently, the
framework also enables us to understand whether and how AI
can influence clinical decision-making.
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