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Abstract

Background: Mobile health (mHealth) apps have become part of the infrastructure for access to health care in hospitals,
especially during the COVID-19 pandemic. However, little is known about the effects of sociodemographic characteristics on
the digital divide regarding the use of hospital-based mHealth apps and their benefits to patients and caregivers.

Objective: The aim of this study was to document the cascade of potential influences from digital access to digital use and then
to mHealth use, as well as the potential influence of sociodemographic variables on elements of the cascade.

Methods: A cross-sectional survey was conducted from January to February 2021 among adult clients at outpatient departments
in 12 tertiary hospitals of Inner Mongolia, China. Structural equation modeling was conducted after the construct comprising
digital access, digital use, and mHealth use was validated.

Results: Of 2115 participants, the β coefficients (95% CI) of potential influence of digital access on digital use, and potential
influence of digital use on mHealth use, were 0.28 (95% CI 0.22-0.34) and 0.51 (95% CI 0.38-0.64), respectively. Older adults
were disadvantaged with regard to mHealth access and use (β=–0.38 and β=–0.41), as were less educated subgroups (β=–0.24
and β=–0.27), and these two factors had nonsignificant direct effects on mHealth use.

Conclusions: To overcome the mHealth use divide, it is important to improve digital access and digital use among older adults
and less educated groups.

(JMIR Hum Factors 2022;9(2):e36962) doi: 10.2196/36962
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Introduction

The term mobile health (mHealth) was coined in 2003 [1] and
is defined as health care practice through mobile devices and
their apps [2,3]. mHealth apps have been developed for hospitals
to allocate and manage their medical care services and to
improve patient satisfaction [4,5]. During the COVID-19
pandemic, mHealth apps were used to implement prescreening,
tracking cases, and social distancing measures [6-8]. COVID-19

as an extra factor is also exacerbating existing inequalities [9].
Older adults and less educated people have been affected the
most by lockdown measures [9,10]. Some hospitals have
implemented mHealth-based online appointments and video
consultations with health care providers [11,12], instead of
traditional register windows and consultation rooms, in order
to reduce contacts [13,14]. Vulnerable people benefit the least
from these digital solutions [9,10].
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The digital divide is defined as a gap between people who have
access to internet services and those who do not [15,16]. The
digital divide is a central issue in the world today [17,18] and
is described using a three-level framework [19] (Figure 1).

Around half the number of people worldwide have access to
the internet. Sociodemographic characteristics, particularly age,
gender, education, and income, predict internet access and use
[7,20].

Figure 1. The three-level digital divide framework.

As of December 2020, Chinese internet penetration had reached
70.4% [21]. Patient satisfaction has become an important
indicator for measuring health care quality [22,23] and policy
evaluations of health care systems, which directly connect with
health services use [24]. mHealth app features affect user
satisfaction in various health care scenarios [25,26]. mHealth
is a specific area that can be used to examine the digital divide.
The Chinese government has tried to implement reforms to
reduce waiting times and improve health care and patient
satisfaction, including the use of mHealth [27-29]. In 2015, the
Chinese government issued an action plan requiring at least
50% of appointments to be online for visiting doctors in tertiary
hospitals by the end of 2017 [30]. However, the adoption rate
of mobile services for outpatients was low, accounting for only
31.5% in 2019 [31]. Whether mHealth in China has reached its
goal is still a subject for debate.

In China, 83% of tertiary hospitals provide online appointments,
of which 60% have mHealth services [4]. The majority of
mHealth apps were nested into WeChat using an official account
or a mini-app [12,32]; WeChat is the most popular social media
platform in China, whereas other platforms have been built by
local governments, companies, or hospitals. Common mHealth
services based out of hospitals are extremely similar to each
other. Generally, potential users must first install the mHealth
app or subscribe to the WeChat official account, sign up to be
a user, then sign in to use the mHealth service. Users can make
an appointment with the doctors and pay the fee for clinical
tests or medicine [33]. mHealth use is recognized as a
fundamental social determinant of health [34], which facilitates

access to medical care services and health outcomes [35,36].
Meanwhile, hospital-based mHealth apps can be used by
caregivers, who may act as proxy users on behalf of patients to
reduce the digital divide [37].

Inner Mongolia is a province located in the northern part of
China and borders Mongolia and Russia to the north. It is an
underdeveloped province [38] containing 49 ethnic minority
groups. Traditional Mongolian medicine, traditional Chinese
medicine, and Western medicine are well supported by the
government and accepted by local citizens [39]. Within this
context, it is likely that there is digital divide between different
groups of health care users. A study on digital divide among
hospital clients in this area could lead to improvement of health
care in the future.

To date, few studies have been conducted to analyze the digital
divide regarding the use of hospital-based mHealth apps. All
previous studies ran regressions to find the potential influence
of sociodemographic variables on mHealth use without
considering the clients’ digital access and digital use
backgrounds. Our framework of evaluation of the digital divide
in mHealth covers the whole spectrum, from digital access to
digital use, mHealth use, and time and satisfaction when using
health care services (Figure 2). Separating the potential influence
of sociodemographics on each part of the cascade, with
simultaneous evaluation of the flow of potential influence along
the cascade, will lead to better understanding and a more
appropriate formulation of policy to minimize these digital
divides.

Figure 2. Research and hypothesis model of mobile health (mHealth) digital divide.
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Methods

Study Design and Setting
A cross-sectional survey was conducted in January and February
2021 in 12 tertiary hospitals across three cities of the Inner
Mongolia Autonomous Region. All studied hospitals provide
mHealth apps with eHealth codes, appointments with doctors,
electronic payment (e-payment), and health record checking.

Participants
Clients (ie, patients and caregivers) who were visiting the
outpatient department for nonemergency care, were aged 18
years or older, and able to speak Chinese were eligible for the
study.

Questionnaire
The questionnaire was created by the research team and
reviewed by an epidemiologist from the public health school
with mHealth research expertise. The IT department of the
Affiliated People’s Hospital of Inner Mongolia Medical
University was consulted twice on the amended questionnaire.

Data Collection Procedure
A study team from the Inner Mongolia Medical University
comprised of resident physicians was assembled and trained on
the data collection process. The interviewers consecutively
contacted clients at a drugstore or outpatient departure areas,
explained the study, and asked for their consent to participate
in the study. Consenting participants were asked to complete
the questionnaire via face-to-face interviews.

Ethics Approval
This research study was approved by the Office of Human
Research Ethics Committee, Faculty of Medicine, Prince of
Songkla University, Thailand (REC.63-306-18-1).

Variables

Independent Variables
Independent variables included demographic information (ie,
age, gender, and area of residence) and socioeconomic status
(ie, educational level, employment status, and household
monthly income).

Constructing the Mediators
Initially, we created a set of digital activities, including having
household internet bandwidth, using a computer, using email,
having a smartphone, having the ability to install apps, having
wearable devices, using the internet, shopping online, using
e-payment, using social media, searching online, using the
internet daily, and using the internet for more than 5 years. For
mHealth app use, since all apps were similar, we did not specify
an mHealth app name in the questionnaire. mHealth app use
was a latent intermediary variable, with its value loaded onto a
series of observed variables: having mHealth apps, having an
eHealth code, making appointments with doctors, attending
consultations with doctors, making e-payments for medical care,
and checking health records. All of these observed variables
were on a “yes or no” binary scale. We then randomly split the
data set in half to run exploratory factor analysis (EFA) in order

to obtain the constructs; we then analyzed reliability within each
factor. Subsequently, the constructs were tested on the remaining
half of the data set for validation via confirmatory factor analysis
(CFA).

Dependent Variables
Dependent variables included time and satisfaction with health
care. We selected four indicators related to mHealth use: waiting
time, check-in process, medicine withdrawal and payment
process, and general satisfaction. These indicators were assessed
using the Chinese Outpatient Experience Questionnaire [40],
which uses a 5-point Likert scale, ranging from 1 (the worst
satisfaction) to 5 (the best satisfaction).

Statistical Analysis
Data were double-entered into EpiData (version 3.1; The
EpiData Association), and analysis was performed using R
(version 4.1.0; The R Foundation). Descriptive statistics were
used to summarize the characteristics of the clients, namely
frequency with percentage for categorical variables and mean
with SD for continuous variables.

CFA was used to analyze the correlation matrix among the
domains. A multiple-indicator, multiple-cause model (MIMIC)
with structural equation modeling (SEM) [41] was used to
examine the association between sociodemographic variables,
mHealth use, and time and satisfaction with health care. The
“polycor” R package was used for polychoric and polyserial
correlations of categorical variables [42], the “psych” R package
was use for EFA [43], and the “lavaan” R package was used
for CFA and SEM [44]. The sample size per hospital was
calculated based on the assumption that 38.4% of Chinese adults
have an mHealth app [45], using an infinite population
proportion formula as follows:

with a 10% error rate (d) and a 95% CI (α=.05). A 10%
nonresponse rate was also assumed. With these parameters, 102
participants were required to be recruited from each hospital.
Due to the effect of COVID-19 on mHealth use, we decided to
recruit 200 participants from each hospital. Finally, 2366
participants were included.

Results

Sociodemographic Factors
A total of 2115 clients provided valid responses. Their mean
age was 43.34 (SD 15.39) years. Other demographic
characteristics are summarized in Table 1. The participants were
distributed nearly equally between the two genders.
Three-quarters resided in an urban area. Almost half of the
participants were educated at the tertiary education level. More
than half were employed by the government or a company.
Their household incomes were also somewhat evenly
distributed, with a median of ¥4000 to ¥6000 (a currency
exchange rate of ¥1=US $0.15 is applicable), which was deemed
to be middle class in China [46].
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Table 1. Basic characteristics of the participants.

Participants (N=2115), n (%)aVariable

Sociodemographic variables

43.34 (15.39)Age (years), mean (SD)

Gender

1007 (47.61)Male

1108 (52.39)Female

Urban residence

1630 (77.07)Yes

485 (22.93)No

Educational level

297 (14.04)Primary or less

805 (38.06)Secondary

1013 (47.90)Tertiary

Employment status

1166 (55.13)Employed

949 (44.87)Unemployed

Household monthly income (¥b)

220 (10.40)0-2000

424 (20.05)2001-4000

456 (21.56)4001-6000

345 (16.31)6001-8000

314 (14.85)8001-9999

356 (16.83)≥10,000

Digital activities

Have household bandwidth

365 (17.26)No

1750 (82.74)Yes

Use a computer

669 (31.63)No

1446 (68.37)Yes

Use email

925 (43.74)No

1190 (56.26)Yes

Have a smartphone

129 (6.10)No

1986 (93.90)Yes

Have the ability to install apps

584 (27.61)No

1531 (72.39)Yes

Have wearable devices

1564 (73.95)No

551 (26.05)Yes
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Participants (N=2115), n (%)aVariable

Use the internet

244 (11.54)No

1871 (88.46)Yes

Shop online

555 (26.24)No

1560 (73.76)Yes

Use e-paymentc

429 (20.28)No

1686 (79.72)Yes

Use social media

548 (25.91)No

1567 (74.09)Yes

Search online

543 (25.67)No

1572 (74.33)Yes

Daily internet use

473 (22.36)No

1642 (77.64)Yes

More than 5 years of internet use

687 (32.48)No

1428 (67.52)Yes

mHealthd use

Have mHealth apps

792 (37.45)No

1323 (62.55)Yes

Have eHealth code

682 (32.25)No

1433 (67.75)Yes

Make appointments with doctors

978 (46.24)No

1137 (53.76)Yes

Attend consultations with doctors

1876 (88.70)No

239 (11.30)Yes

Use e-payment for medical care

1102 (52.10)No

1013 (47.90)Yes

Health record checking

1409 (66.62)No

JMIR Hum Factors 2022 | vol. 9 | iss. 2 | e36962 | p. 5https://humanfactors.jmir.org/2022/2/e36962
(page number not for citation purposes)

Cao et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Participants (N=2115), n (%)aVariable

706 (33.38)Yes

aAll values are reported as n (%), except for the age variable.
bA currency exchange rate of ¥1=US $0.15 is applicable.
ce-payment: electronic payment.
dmHealth: mobile health.

Digital Activities
Overall, 88.46% of the participants used the internet, 82.74%
had access to the internet at home, and 93.90% had a
smartphone. In total, 68.37% of participants used a computer,
and 56.26% could use email. Three-quarters of the participants
could self-install an app, and one-quarter wore smart wearable
devices. Around three-quarters of the participants purchased
commodities online, used e-payment, used social media, and
performed information-searching online. Most used the internet
daily and had been using it for more than 5 years.

mHealth App Use
Overall, 62.55% of the participants had an mHealth app, 67.75%
had an eHealth code, 53.76% could make an appointment to
see a doctor, 47.90% used e-payment for health care, 33.38%
reviewed their health record on an mHealth app, and 11.30%
consulted with a doctor online (Table 1).

EFA Model of mHealth Digital Divide
From the EFA, validation of the classification of digital activities
was performed with a Kaiser-Meyer-Olkin test [47], with a

sample adequacy of 0.929 [48], and a Bartlett test of sphericity,

which was statistically significant (χ2
253=1260.1, P<.001) [49].

Based on the parallel analysis, four factors were determined
[50]. Due to the nonnormally distributed data, principal axis
factoring was used as an appropriate extraction method [51],
and oblimin rotation was used as an appropriate oblique rotation
method [52]. Five items (ie, “have household bandwidth,” “have
wearable devices,” “use social media,” “use e-payment,” and
“attend consultations with doctors”) had factor loadings of less
than 0.4 [53] or high cross-loadings [54] and were, thus, dropped
from the analysis.

Finally, we came up with four domains (ie, factors): digital
access, digital use, mHealth use, and time and satisfaction with
health care. Details of the EFA are shown in Table 2.

The factor loadings were high, ranging from 0.469 to 0.886.
Cronbach α values were all above .8. These four factors
explained 62% of the variance. All of these values suggested
that our construct was adequate.
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Table 2. Measurement items and their reliability by exploratory factor analysis.

Proportion of total varianceaCronbach αaCommunalityLoadingFactor and items

Digital access

0.121.800.5570.717Have a smartphone

0.8250.886Use the internet

0.4780.542Daily internet use

Digital use

0.212.920.7160.740Have the ability to install apps

0.5170.613More than 5 years of internet use

0.6760.604Shop online

0.6890.696Search online

0.7210.878Use a computer

0.7030.881Use email

mHealthb use

0.154.860.5330.610Have mHealth apps

0.3730.469Have eHealth code

0.6460.863Make appointments with doctors

0.7710.846Use e-paymentc for medical care

0.5630.710Health record checking

Time and satisfaction with health care

0.133.840.5860.779Waiting time

0.7280.836Check-in process

0.6580.803Medicine withdrawal and payment process

0.4230.649General satisfaction

aValues for groups are reported in the row of the top variable of the group.
bmHealth: mobile health.
ce-payment: electronic payment

CFA and SEM Model of mHealth Digital Divide
The second part of the data set was used to assess reliability
and validity by CFA. The measurement model of digital divide
in mHealth app use was adequately measured by associated
indicators based on high factor loadings. The correlations among
latent variables by CFA are shown in Table 3. The model fitted

the data well, according to the following indices: χ2
129=528.3,

χ2/df=4.095, comparative fit index (CFI)=0.940, Tucker-Lewis
index (TLI)=0.929, root mean square error of approximation
(RMSEA)=0.054 (90% CI 0.049-0.059), and standardized root
mean square residual (SRMR)=0.042. The Cronbach α
reliability coefficient was greater than .7, and convergent
validity based on average variance extracted was greater than
0.5.

A MIMIC model with SEM was investigated for the model of
mHealth digital divide by using the weighted least square mean
and variance adjusted estimator [55], since most of the variables
were categorical. The overall indices of the final SEM model

fitted the data well: χ2
216=682.6, χ2/df=3.160, RMSEA=0.045

(90% CI 0.041-0.049), SRMR=0.036, CFI=0.949, and
TLI=0.938 [53].

Figure 3 shows the regressions of all the paths. The details of
the β coefficients and 95% CIs are shown in Table 4. Age was
taken as a continuous variable. Although education and
household income were initially ordinal categorical variables,
we standardized them as continuous variables to suit the SEM.
Their coefficients were interpreted as whether these had a
dose-response relationship with the outcome. Age and education
were strongly associated with digital access and digital use.
Income had a low effect on digital access, and income,
employment status, and urban residence were weakly correlated
with digital use. No significant gender gap regarding these
variables was seen. The cascaded coefficients (95% CI) from
digital access to digital use, then to mHealth use, and then to
time and satisfaction with health care were 0.28 (95% CI
0.22-0.35), 0.51 (95% CI 0.38-0.64), and 0.14 (95% CI
0.05-0.22), respectively. mHealth use, however, had a weakly
significant effect on time and satisfaction with health care.
mHealth use was not significantly associated with
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sociodemographic variables, except for employment status, with
which it had a weak correlation.

The potential influence of sociodemographic characteristics
reflected the level of digital divide. The number of variables

and the magnitude of the coefficients were higher for digital
use than for digital access and mHealth use. Thus, use divide
in our setting was the most important gap.

Table 3. Correlation analysis (Pearson r and 2-tailed P value) among latent variables by confirmatory factor analysis.

Time and satisfaction with health caremHealtha useDigital useDigital accessLatent variable

Digital access

0.159b0.417b0.718b1.000r

.001<.001<.001—cP value

Digital use

0.226b0.607b1.0000.718br

<.001<.001—<.001P value

mHealth use

0.231b1.0000.607b0.417br

<.001—<.001<.001P value

Time and satisfaction with health care

1.0000.231b0.226b0.159br

—<.001<.001.001P value

.835.857.912.745Cronbach α

0.5870.5590.6390.582Average variance extracted

amHealth: mobile health.
bThe correlation is significant at a significance value of .05 (2-tailed).
cNot applicable.
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Figure 3. Structural equation modeling for digital divide in mobile health (mHealth). Solid lines represent significant relationships, and dotted lines
represent nonsignificant ones; numbers on the lines from sociodemographic variables to latent variables are standardized coefficients, and numbers on
the lines from latent variables to items are loadings. ***P<.001, **P<.01, and *P<.05.
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Table 4. Regression weights of parameters by the multiple-indicator, multiple-cause model with structural equation modeling.

P valueβ coefficient (95% CI)Link

<.001–0.38 (–0.45 to –0.31)Age → digital access

<.001–0.41 (–0.46 to –0.36)Age → digital use

.40–0.04 (–0.15 to 0.06)Age → mHealtha use

.07–0.08 (–0.16 to 0.01)Age → time and satisfaction with health care

<.0010.24 (0.15 to 0.32)Educational level → digital access

<.0010.27 (0.22 to 0.33)Educational level → digital use

.410.04 (–0.05 to 0.12)Educational level → mHealth use

.040.09 (0.00 to 0.17)Educational level → time and satisfaction with health care

<.0010.13 (0.06 to 0.19)Household income → digital access

<.0010.08 (0.04 to 0.12)Household income → digital use

.620.02 (–0.05 to 0.08)Household income → mHealth use

.010.09 (0.02 to 0.17)Household income → time and satisfaction with health care

.200.03 (–0.02 to 0.09)Employment status → digital access

<.0010.10 (0.07 to 0.14)Employment status → digital use

.010.08 (0.02 to 0.15)Employment status → mHealth use

.940.003 (–0.07 to 0.07)Employment status → time and satisfaction with health care

.53–0.02 (–0.09 to 0.05)Urban residence → digital access

<.0010.07 (0.03 to 0.11)Urban residence → digital use

.20–0.04 (–0.09 to 0.02)Urban residence → mHealth use

.03–0.07 (–0.14 to –0.01)Urban residence → time and satisfaction with health care

.060.06 (0.00 to 0.11)Gender→ digital access

.41–0.01 (–0.05 to 0.02)Gender → digital use

.07–0.05 (–0.11 to 0.00)Gender → mHealth use

.850.006 (–0.06 to 0.07)Gender → time and satisfaction with health care

<.0010.28 (0.22 to 0.35)Digital access → digital use

<.0010.51 (0.38 to 0.64)Digital use → mHealth use

.0020.14 (0.05 to 0.22)mHealth use → time and satisfaction with health care

amHealth: mobile health.

Discussion

Principal Findings
We confirmed the framework of digital divide in mHealth app
use. Our subjects were mostly educated and middle class, with
good experience in internet use and other digital media. Between
one-half to two-thirds were using basic mHealth features.
Sociodemographic factors had stronger potential influences on
digital use than on digital access; they also had the least direct
effect on mHealth use and time and satisfaction with health
care. However, mHealth use was potentially influenced by
digital use. Time and satisfaction with health care, on the other
hand, was only weakly associated with mHealth use.

The data from this study identified a cascade of potential
successive influences, where digital access influenced digital
use, which then influenced mHealth use. mHealth use was
determined by digital access and use. Similar to our study, a

study by Tirado-Morueta et al [20] found that there was an
indirect potential influence pathway from physical access to
operative use and expressive informative use of the internet;
ignoring this intermediary and simple running regression that
predicted mHealth use from sociodemographics would lead to
a misinterpretation of the results.

Among the sociodemographic variables examined, age and
educational level were the stronger potential influencing
variables. Both had direct independent influence on digital
access and use, but had no direct effect on mHealth use; in
addition, educational level had little effect on time and
satisfaction with health care. Thus, their effects occurred in the
early part of the digital chain. Based on this potential pathway,
assistance for older adults and less educated public clients would
need to start with improvements in access and use of the internet
in general, as well as mobile facilities, such as email, social

JMIR Hum Factors 2022 | vol. 9 | iss. 2 | e36962 | p. 10https://humanfactors.jmir.org/2022/2/e36962
(page number not for citation purposes)

Cao et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


media, and online business. Experience with these will make
mHealth use easier for them.

Sociodemographic variables had a stronger potential influence
on digital use than on digital access. This may reflect that the
use divide was due to lifestyle differences more than it was due
to inequity problems [56]. The cost of digital access in China
was relatively small (around US $15/60 Mbps or more per
month [57]) and, hence, did not contribute much to digital access
inequalities. On the other hand, certain sociodemographic
groups, such as youth and upper-class people, choosing or
needing to use digital technology is due to their lifestyle [58].
The small but significant correlation (β=0.28) between digital
access and digital use may, in fact, reflect a noncausal
relationship.

With the use of SEM, our findings on the effects of
sociodemographic variables were different from those of other
studies using one-step regression [59,60]. These other studies
showed that sociodemographic variables potentially influenced
mHealth use, but they missed the fact that the effect passed
through digital use. Their findings would indicate the emphasis
to improve mHealth use among the underprivileged. Our
findings, on the other hand, imply that improved general digital
use would be a more natural way to empower these groups of
clients. This will make it easier and probably more effective to
introduce mHealth to them. To reduce the existing digital divide
among hospital clients, the hospital administration should
provide special services or appropriate education to assist clients
in making better use of mHealth apps.

According to another study in China, mHealth was effective in
reducing patient waiting times and increasing patient satisfaction

in tertiary hospitals [26]. Another study found that waiting times
for consultations and prescription filling reduced, resulting in
increased outpatient satisfaction with pharmacy services [27].
Moreover, our study validated the marginally significant effect
of mHealth use on shorter waiting times and improved
satisfaction. This indicates that mHealth app use cannot
adequately explain shorter waiting times and increased
satisfaction. This indicates a need for further study. Additionally,
since mHealth app use in hospitals is in its infancy, mHealth
apps must be improved in terms of design and marketing based
on existing digital use to increase their use and provide benefits
to clients [33].

Limitations
This was a cross-sectional study. One may argue that the
causation proposed in the SEM was limited by temporal
sequence and may not be valid. We argue that sociodemographic
variables are long-term values and do not vary much over time,
whereas digital divide in these domains only comes after. Mobile
apps were developed nearly a decade after the wide use of the
internet began, and hospital-based mHealth is the most recent
development. Therefore, our proposed pathway may not be
flawed in terms of temporal sequence. The current stage of
mHealth development in our setting is changing continuously.
Thus, further studies may produce different results.

Conclusions
In order to close the mHealth use divide, it is important to
improve digital access and digital use among older adults and
less educated groups.
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