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Abstract

Background: Tracking and visualizing health data using mobile apps can be an effective self-management strategy for mental
health conditions. However, little evidence is available to guide the design of mental health–tracking mechanisms.

Objective: The aim of this study was to analyze the content of user reviews of depression self-management apps to guide the
design of data tracking and visualization mechanisms for future apps.

Methods: We systematically reviewed depression self-management apps on Google Play and iOS App stores. English-language
reviews of eligible apps published between January 1, 2018, and December 31, 2021, were extracted from the app stores. Reviews
that referenced health tracking and data visualization were included in sentiment and qualitative framework analyses.

Results: The search identified 130 unique apps, 26 (20%) of which were eligible for inclusion. We included 783 reviews in the
framework analysis, revealing 3 themes. Impact of app-based mental health tracking described how apps increased reviewers’
self-awareness and ultimately enabled condition self-management. The theme designing impactful mental health–tracking apps
described reviewers’ feedback and requests for app features during data reporting, review, and visualization. It also described
the desire for customization and contexts that moderated reviewer preference. Finally, implementing impactful mental
health–tracking apps described considerations for integrating apps into a larger health ecosystem, as well as the influence of
paywalls and technical issues on mental health tracking.

Conclusions: App-based mental health tracking supports depression self-management when features align with users’ individual
needs and goals. Heterogeneous needs and preferences raise the need for flexibility in app design, posing challenges for app
developers. Further research should prioritize the features based on their importance and impact on users.

(JMIR Hum Factors 2022;9(4):e40133) doi: 10.2196/40133
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Introduction

Background
Mobile health (mHealth) tools, which often include
interventional and health-tracking features [1,2], have been
shown to have therapeutic effects on mood and anxiety disorders
[3]. These effects can be attributed in part to interventions
derived from conventional therapy, such as app-based exercises
with cognitive behavioral therapy elements. However, a second
complementary effect mechanism has been proposed: by
identifying patterns in tracked data, the user learns their own
health signals and triggers, enabling proactive health or situation
management [4,5]. Such feedback can also facilitate engagement
and adherence to mHealth technologies, presenting opportunities
for long-term condition management and intervention [6].

To be impactful, these tracking mechanisms must be context
sensitive, personally relevant, and readily understandable [7].
This is especially challenging when managing depression, as
contextual factors, low mood, past experiences with health
tracking, and data literacy affect how individuals interact with
or interpret their data [8]. Collaborative design methods,
working directly with members of the app’s target audience,
are recommended during app development [9]. Although these
sessions are often productive and insightful, they are conducted
in controlled settings and often reflect hypothetical feedback
from a small group of people [9]. Therefore, these studies do
not necessarily capture the complex contexts in which apps will
be used and instead use brief interactions with a subset of a
diverse population to extrapolate preferences for long-term app
engagement [10]. Case studies, best practices, and frameworks
suggest methodology and general topics (eg, the value of simple
visualizations with meaningful data) to explore during these
sessions [4,11-13]. However, few externally valid data on patient
preferences are available to guide the initial hypotheses and
design proposals.

Commercially available mood tracking and health management
apps are increasingly used for mental health conditions such as
depression, anxiety, and bipolar disorder [14,15]. These apps
are gaining popularity as a source of knowledge for app and
app feature design, although existing reviews of mental health
management apps focus on available features rather than the
overall design and experience of the included features from the
perspective of the users [1,2,15,16]. User reviews of apps, which
are publicly available on app stores, contain valuable insights
into the real-world use and user experience of mHealth apps
and may provide historical data on app successes and failures,
as well as the preferences and experiences of app users [17].

Aim
The aim of this study was to identify the individual experiences,
perspectives, and preferences reported in user reviews of
mHealth apps for depression self-management. Through a

content analysis of these reviews, we synthesized app reviewers’
self-reported experiences, preferences, and requests to inform
the development of future depression health management apps.

Methods

Objectives and Research Question
In this study, we explored user experiences of data tracking,
visualization, and feedback provided in commercially available
mHealth apps for depression self-management. The review
protocol was developed a priori, based on the framework
proposed by Nicholas et al [17,18].

Identifying Eligible Apps
Preliminary searches and previous app reviews [16]
demonstrated that a comprehensive content analysis of all
depression-related app user reviews was impracticable because
of the large number of existing apps and the limited search
features of app stores. Instead, we identified apps from 3
sources: searches of Google Play and iOS App stores, databases
of apps endorsed by health care entities, and “Top App” lists
published on the web. First, the first 20 apps [19] were extracted
from each app store in July 2020 for each of 5 search terms:
“depression,” “depression tracker,” “depression diary,” “mood
tracker,” and “mood diary.” All searches were conducted by
the same researcher in London, United Kingdom. Each store
returned apps ordered by relevance according to the proprietary
algorithms of the app stores. These searches yielded 100 apps
from each store, many of which were duplicates. We then
identified all the apps listed in the National Health Services
Apps Library [20] and Orcha [21] using the same search terms.
Finally, we identified consumer-oriented reviews on the web,
which list the top apps for managing depression. We used a
Google search for “Top Depression Apps” published between
2018 and 2020 and extracted all apps listed in the first 5 review
articles returned by the search engine’s proprietary algorithm.
We designed our search to systematically identify popular apps
that were most likely to be identified and used by potential
consumers [14]. These sources reflect 3 scenarios through which
people with depression are likely to identify health management
apps: searches on an app store, endorsement by health care
professionals, and endorsement by peers or influencers. To the
extent possible, we adopted systematic search best practices,
such as establishing search strategies a priori, searching diverse
databases, and using multiple search terms [22].

Identified apps were then reviewed for eligibility, as described
in Textbox 1.

The eligibility criteria were piloted by 2 reviewers (AP and BE)
who underwent a consistency check on 50 apps. Agreement
was assessed using Cohen κ [23]. All remaining apps were
reviewed for eligibility by a single reviewer (BE) and confirmed
by a second reviewer (AP). Disagreements were resolved by
discussion.
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Textbox 1. App eligibility criteria.

Apps were eligible if they:

• were publicly available either on Google Play or iOS App stores

• were designed for mental health self-management and specifically mentioned depression in the app’s title or description

• included active or passive condition tracking functionality (eg, via a diary function or wearable tracker)

• displayed recorded symptom, health, or wellness data to the user in any textual or graphical format

• were intended for use by individuals living with mental health conditions, rather than professionals or caregivers

• were available in English

• were actively updated and supported, defined as having documentation or software updates within the previous 12 months

Identifying Eligible User Reviews
In July 2020, user reviews in the English language posted on
or after January 1, 2018, were scraped from Google Play and
iOS App stores using the Appbot web application (Appbot).
This search was updated in January 2022 to investigate
longitudinal changes in review content, as several of the
included apps were newly released at the time of the original
search. Reviews were filtered using keywords (Graph* OR
Data* OR Visual* OR Figure* OR Track* OR Info* OR
Display* OR Picture*), extracted, and manually screened for
eligibility. The user ratings of the app (ie, out of 5 stars) were
also extracted. Reviews were eligible if they explicitly or
implicitly referred to symptom tracking, use of tracked data, or
data visualization. Reviews that discussed the app’s layout or
user interface were not eligible. If a review mentioned other
topics in addition to tracking or data visualization, only the
relevant part of the review was included in the content analysis.

Owing to the large number of available user reviews, we
analyzed content to the point of data saturation in a
representative sample rather than conducting an exhaustive
content review. To prevent sampling bias, we randomized the
order of the reviews and extracted the first 50 eligible reviews
per app per store (or all eligible reviews when apps had fewer
than 50 reviews). The second round of review followed the
same procedure as the first, except that we initially extracted a
smaller sample size per app (30 reviews per app per store),
proportional to the shorter time frame covered by the search.

Qualitative Analysis

Framework Analysis
Overall, 51.09% (633/1239) of the original sample was
randomly selected for coding. This subsampling procedure was
stratified by app and app store, yielding a maximum of 25
reviews per app per store. We planned to take additional random
samples if data saturation (discussed in further sections) was
not reached; however, no additional samples were required. In
the update, we coded only 150 additional reviews before
confirming the themes identified in the original search. Reviews
and their metadata were managed and coded using Microsoft
Excel.

User review content was explored through framework analysis
[24,25] using a coding frame developed in a related systematic
literature review [8]. Our protocol allowed for iterative revisions

to this frame, including inductive coding, to reflect emerging
themes. In all, 3 reviewers coded a set of 100 reviews with
deductive codes (ie, those represented in the existing coding
frame) and inductive codes derived from the Thomas and Harden
[26] inductive approach to data analysis. Each reviewer
suggested additions and revisions to the original coding frame.
A consensus was reached through discussion, and code
definitions were updated and clarified as necessary. Two
reviewers (ED-L, GG, or AP) then recoded all user reviews
according to the updated coding frame. Coders had the option
to propose additional codes during regular review meetings if
the frame did not adequately describe the data, but none arose.
One reviewer (AP) then reread reviews organized by the code,
summarized their content, and proposed themes. Themes were
then revised and finalized according to the consensus reached
through iterative discussions with the review group.

Ensuring Rigor and Establishing Validity
The members of the review team had backgrounds in
psychology, epidemiology, digital health technology design,
and informatics. We specifically approached this analysis
through the lens of a mental health app design, aiming to
produce guidance that could guide app developers. Most
reviewers had previous experience in qualitative data analysis
in the field of digital health and preference research. Those who
did not, received training from experienced researchers (AP and
SS) on systematic review conduct, framework analysis, and the
coding frame before their contributions to the study. The review
protocol was drafted a priori and piloted before the start of the
study. To the extent possible, review conduct and reporting
adhered to the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines for
systematic literature reviews [27]. Whenever a subset of reviews
was sampled, the reviews were randomly selected to minimize
selection bias. Investigators underwent consistency checks at
each stage, for which Cohen κ consistently exceeded 0.7,
indicating excellent agreement [23]. All coding was conducted
in duplicate to ensure that personal interpretations or human
errors did not unduly influence the results. The team held regular
discussions, first to clarify aspects of codes or eligibility criteria
and then to explore emerging themes.

Sampling adequacy was ensured to the extent possible (given
our limited knowledge of the reviewers’ demographics) by
monitoring for saturation of the codes. First, we distinguished
between the saturation of codes and the saturation of each code’s
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meaning [28]. We defined the former as confirmation of the
code’s presence in the data set and the latter as the degree to
which codes or themes are exemplified in the data set [29]. To
evaluate the saturation of the codes, we used the Fugard and
Potts [30] method to predict saturation based on probability
theory. This approach was appropriate for our data set, given
our large, random sample of reviews and our predominantly
deductive approach to data analysis [30,31]. Our data set
provided >80% power to identify 5 instances of themes
mentioned by 1% of the population. We chose a cutoff of 1%
to reflect the shallow nature of this data set, assuming that not
all who experienced a code would describe it in their review,
and 5 instances because this was typically the number of
observations required to achieve repetition of content within
the codes. Therefore, we confirmed the code to be present in
the data set when we observed 5 instances of the code. We
further ensured that saturated codes were present in the reviews
of more than one app to reduce spurious or app-specific findings.
To ensure validity and saturation of meaning, we qualitatively
monitored coded reviews for (1) congruence with the meaning
established in the original coding frame, (2) new meaning or
content that did not arise in the original coding frame, (3)
repetition of meaning and content within each code, and (4)
repetition of the original search and update. We then conducted
quantitative analyses and member checking with our patient
advisory board to assess the influence of potential confounders
and ensure the face validity of our results.

Quantitative Analysis
We calculated the sentiment of each coded review using the
polarity score generated by the Python programing language’s
TextBlob library [32]. Sentiment analysis describes the affective
or emotional tone presented in the text [33] based on
psychological evidence of the emotional meaning of constituent
words or phrases [34,35]. It has been used in several
health-related cases, such as in detecting language associated
with depressive symptoms [36,37], extracting opinions on health
care–related topics [38], and identifying mental health stigma
in social media data [39]. The score derived from this analysis
identifies text with positive, neutral, or negative tones on a
continuous scale, where scores closer to −1 are very negative,
scores closer to +1 are very positive, and a score of 0 is neutral.

The normality of sentiment scores and user ratings was assessed
visually and via the Shapiro-Wilk test [40]. Ratings and scores
were not normally distributed; therefore, nonparametric statistics
were used to identify differences among app stores, apps, and
codes. Kruskal-Wallis tests [41,42] and Wilcoxon signed rank
tests [43] identified differences in sentiment scores and ratings
among subgroups and over time. Cumulative link mixed models
[44] examined differences in ratings among subgroups, whereas
linear mixed models [45] examined differences in sentiment
scores. Random effects of individual apps were assumed for
both methods, and the effects were assessed for statistical
significance using likelihood ratio tests [44,45]. Fisher exact
tests assessed yearly changes in code frequency [46,47]. The
significance level was assumed to be α=.05, and all analyses
were corrected for multiple testing using the
Benjamini-Hochberg procedure [48]. All statistical analyses
were conducted in R (version 4.1.0; R Foundation for Statistical

Computing) using the RStudio environment (version 1.4.1717)
[49].

Patient and Public Involvement
This review is part of a study series that was codeveloped with
the members of our patient advisory board. The board was
involved in designing the study, developing search terms,
reviewing the analysis plan, member checking the coding frame,
and interpreting the results. A representative (RIN), who is one
of the authors of this manuscript, critically reviewed the
manuscript.

Ethical Considerations
Ethics approval was not required as we used publicly available,
nonsensitive data, that was anonymized.

Results

Included Apps and User Reviews
The searches identified 130 unique apps, of which 26 were
eligible for inclusion. An app selection flow diagram similar to
that recommended for systematic literature review reporting
[27] is provided in the Figure S1 in Multimedia Appendix 1,
and the characteristics of the included apps are provided in Table
S1 in Multimedia Appendix 2. In the first round of analysis, we
extracted 1239 eligible user reviews from these apps. All eligible
reviews were included in the sentiment analysis, and 633 were
included in the framework analysis. In the update, we extracted
702 eligible user reviews, of which 150 (21.4%) were included
in the framework analysis before saturation was reached. The
1941 eligible reviews generally had positive sentiment scores
(median 0.27, IQR 0.14-0.40, range −0.70 to 1.00) and most
accompanied positive user ratings (median 5, IQR 4-5, range
1-5). Ratings and sentiment scores differed among apps
(P<.001). Ratings did not differ among app stores (P=.84), but
sentiment scores were slightly lower in iOS App store than in
the Google Play store (median for Google Play store 0.30, IQR
0.16-0.44; for iOS 0.24, IQR 0.12-0.36; P<.001) after adjustment
for app-related random effects. Ratings and sentiment scores
of individual apps decreased over the 4 years of the review
period, both overall (ratings P<.001; sentiment scores P=.009)
and independently for several apps (Table S2 in Multimedia
Appendix 2).

Three themes emerged from the framework analysis of 783
reviews: “Impact of app-based mental health tracking,”
“Designing impactful mental health–tracking apps,” and
“Implementing impactful mental health–tracking apps.”

Impact of App-Based Mental Health Tracking
Users described how tracking their health through apps provided
structure and organization for their health management,
improved their ability to recall past experiences, and increased
their self-awareness, allowing them to identify patterns and
track their progress. This enabled them to use interventions,
self-care, or preventive actions to proactively self-manage their
depression and reduce their symptoms. Experiencing these
impacts affected the reviewers’ willingness to engage with the
app regularly. Illustrative quotes are provided in Table 1.
Reviews reporting the impact of health tracking were
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accompanied by higher ratings, although the sentiment scores
of these reviews did not differ from those of the entire corpus

(Table S1 in Multimedia Appendix 1).

Table 1. Themes, underlying codes, and illustrative quotes comprising the theme “Impact of app-based health tracking.”

Illustrative quotesCode definitionCodesa

“Very helpful for tracking your mood and helping you feel
better. It takes you into your thoughts to realize why you’re
feeling how you do and to help you cope. It is very orga-
nized in a helpful way with a simple graph...” [Youper,
2021, 4 stars]

Any description of how visualizations related to or affected
service users’ self-awareness, usually regarding symptoms
and triggers. Subcodes describe the use of visualizations
to identify patterns (eg, identify responses to a trigger, re-
lating specific activities to symptoms) or seeing progress
(eg, seeing change over time or in response to an interven-
tion)

Increase self-awareness;
N=193; deductive

“I use it to track my energy and attention levels to create
a more productive daily schedule.” [iMood, 2021, 5 stars]

Any description of how tracking affected (actually or hypo-
thetically; implicit or explicit) service users’ ability to or-
ganize or structure their memories, symptom data, or ap-
proach to self-management

Provide structure and organi-
zation; N=188; deductive

“I’m loving this app! It has so many features to explore
that help me grow and learn. The training is spot on, and I
love the ability to keep track of my emotions in such detail.
The tracker has helped me spot areas that I can focus on to
keep me in a healthy state of mind. Highly recommend!”
[Lift, 2019, 5 stars]

Any description of how visualizations affect (actually or
hypothetically; implicit or explicit) participants’ ability or
motivation to self-manage their conditions

Enable proactive self-man-
agement; N=97; deductive

“This app is wonderful. The design is playful and fun with
the cloud mascot and the ability to earn stickers and the
other unobtrusive progress tracker. More importantly, it
works. I have recently been under a lot of stress. This app
has made me feel much more grounded and myself than I
have felt in a long time.” [MyLife Meditation, 2018, 5 stars]

Any discussion of how visualizing data directly or indirectly
changed an individual’s symptoms or an individual’s per-
ception of their symptoms

Alter symptoms; N=68; in-
ductive

“Incredible app for free. I used to really dislike mood
trackers and always ended up removing them, but this is
brilliant. Lovely to use, lots of easy settings and so many
areas to track. Will be using this for a long time.” [Bearable,
2020, 5 stars]

Any description of how tracking affected (actually or hypo-
thetically; implicit or explicit) engagement with remote
monitoring technologies, either within a single session of
using the app or over time

Enable engagement with
apps; N=66; deductive

“I’m a sensitive person, so many things ‘set me off’ in a
different mood. Aside from seeing a therapist regularly,
this app has made a huge difference in how I view myself,
my thoughts, and my emotions.” [Moodpath, 2020, 5 stars]

Any description of how visualizations affect (actually or
hypothetically; implicit or explicit) service users’perception
of themselves, their illness, or their abilities, either positive-
ly or negatively

Affect self-image; N=21;
deductive

“...My favorite feature is the mood tracker which lets you
track your mood throughout the day and then averages it.
You also can write a little explanation about your
mood—which if you’re like me with not the best memory
it’s so nice to be able to go back and see those entries. It
also helps me realize that setbacks I face throughout my
day [and would ordinarily obsess about] are just little blips.
I can see that despite my panic attack the day is still good,
it hasn’t been completely ruined. It’s been very helpful for
me to have something visualizes that so well...” [Bearable,
2020, 5 stars]

Any description of how visualizations affect (actually or
hypothetically; implicit or explicit) service users’ ability
to remember or recount historical symptoms or experiences

Improve recall of past expe-
riences; N=9; deductive

“It is really helpful to track my mood. It helps me pause
and reflect. It’s easier to challenge my thought in private
and accept reality.” [Woebot, 2019, 5 stars]

Any description of how tracking affected services users’
perception of the validity, acceptability, normality, or real-
ness of their own symptoms

Validate current experi-
ences; N=7; deductive

aThe number of times each code was identified (N) and whether the code was deductive or inductive.

Designing Impactful Mental Health–Tracking Apps

Overview
Reviewers frequently attributed their ability to achieve (or not
achieve) the desired impacts of mental health tracking to aspects
of an app’s features and designs. Although a single set of codes
was relevant throughout this theme, the review content related
to app features and design preferences was grouped into two

stages of health tracking: (1) recording data and (2) reviewing
and visualizing data. Two additional subthemes, “customization”
and “preference moderators, appeared across multiple aspects
of app design. Illustrative quotes are provided in Table S2 in
Multimedia Appendix 1.
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Recording Data
The reviewers discussed a variety of formats for recording data,
including scales, selection of prepopulated options, free text,
pictures, emojis, and dialogue with chatbots. They described
how, through any mechanism, data entry must be simple, despite
the complexity of the data that they often need to track. For
them, simplicity meant that data reporting should be quick, easy,
and readily accessible, especially during low moods when they
have reduced motivation to track their symptoms. However,
oversimplifying apps by reducing the number of categories
available to track often undermined their usefulness. Scaled
options such as mild, moderate, and severe or simple emotions
such as sadness or happiness were often perceived as too vague
to be meaningful. Tracking moods through emojis evoked
opposing responses; some reviewers found them too generic to
be meaningful, whereas others appreciated their simplicity. For
some reviewers, reporting data through dialogue, such as
through a chatbot, was perceived as more natural and private
than through a journal or questionnaire, making them more
willing to document their experiences.

User reviews described how individuals have unique symptoms,
triggers, and environments; therefore, individual tracking needs
extend beyond mood and emotions. Preferences related to
tracking mechanisms were often moderated by context and past
experiences with health tracking. Annotation with contextual
information was often requested to aid future data interpretation.
This included the date, day of the week, and time of the
symptom, as well as noteworthy events that happened during
the day. This was most frequently described or requested as a
free-text field that could be accessed when reviewing the data.
Reviewers also liked using pictures and tags to contextualize
their data.

Reviews consistently praised or requested the ability to
customize the data, mood, and symptoms tracked in the app.
Suggestions included sleep, daytime naps, diet, water and coffee
intake, exercise, weight, menstruation, medications, stressful
events or conversations, and use and effectiveness of coping
strategies. Conversely, users described how tracking could be
overwhelming if a data-reporting mechanism provided too many
options. Similarly, the required time frame or frequency of data
reporting differed from person to person. Frequently, apps only
allowed users to log 1 mood or diary entry per day, although
the ability to log multiple times per day was sometimes available
as a paid feature. Once-daily tracking was generally considered
insufficient to track patterns, triggers, and health status, as
emotions and symptoms evolve throughout the day.

Reviewing or Visualizing Data
Reviewers described color coding, statistical summaries, graphs
and calendar views, and nontraditional visualizations, such as
word clouds, as valuable and engaging formats. They also
suggested that it is important to visualize and compare multiple
data streams when attempting to identify patterns. However,
relevant data streams differed between individuals and contexts,
and many noted that it was important to customize which
variables to visualize and compare. Additional contextual or
clinical information was also frequently requested to aid
interpretation visualization. However, several reviews have

cautioned against making graphs overwhelming, suggesting
that the balance between simplicity and complexity must be
carefully considered during design.

They also suggested that the time frame represented in the
visualizations should be flexible or customizable because
visualizations over different time frames were useful in different
contexts. Shorter time frames helped individuals reflect on their
days and identify triggers, especially during periods of low
mood. Visualizations covering longer time frames helped
individuals see progress or trends and were useful as
communication tools for physicians.

Implementing Impactful Health-Tracking Apps

Overview
Reviewers also discussed aspects of app implementation that
affected their health-tracking practices and abilities. This theme
comprised 3 subthemes: “integrating app-based tracking into a
larger health ecosystem,” “costs, finance, and paywalls,” and
“technical issues.” Illustrative quotes are provided in Table S3
in Multimedia Appendix 1.

Integrating App-Based Tracking Into a Larger Health
Ecosystem
This theme is related to communication and sharing, generating
reports and exporting data, connectivity, and interoperability.
Reviewers frequently described or requested the ability to export
their data and generate reports, either for personal use or to
facilitate communication with others. Storing data in the app
alone was often considered insufficient, and reviewers frequently
described their desire to export their data. They conducted
additional analyses outside the app and archived the data to
prevent data loss. Often, reports and visualizations were used
to communicate with health care providers during therapy
sessions. When data entry required an internet connection,
reviewers requested offline modes to enable regular and reliable
tracking regardless of the environment and context. They also
regularly praised or requested integration with other health apps
and appreciated when apps could track all necessary data in one
place (symptoms, mood, medication, diet, etc); therefore,
duplicate input was not necessary.

Costs, Finance, and Paywalls
Cost, finance, and paywalls were usually discussed in terms of
whether the app or premium version was worth purchasing,
although insufficient detail was provided to establish which
factors made the apps worth purchasing. Originally, apps were
either free with advertising, one-time purchase, or “freemium”
with free features but the option for a paid upgrade. These
options were generally well received by reviewers who weighed
the pros and cons of paying to track their health data. However,
several apps have changed to a subscription model in 2020 or
2021, with many or most tracking features requiring monthly
or weekly fees. Many reviewers considered this model
overpriced, unaffordable, or exploitative and often reported
switching to other tracking apps for this reason. Reviewers also
discussed the effects of data loss when apps updated or changed
their access models. The included ratings associated with these
apps decreased significantly following these changes
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(Multimedia Appendix 2). This change also preceded the
changes in the frequency of several codes over time (Table S2
in Multimedia Appendix 2), reflecting the reduced access and
customizability of features that were affected by a paywall.

Technical Issues
The most common technical issues were data loss and
inaccuracies in the app data. Data loss was frequently
devastating, as apps held years of insight and a wealth of
knowledge reviewers used for self-management. Other issues
included dates and times displaying inaccurately in
visualizations and issues in exporting data when export was
supposed to be possible. Reviews reporting technical issues
received significantly lower ratings and sentiment scores, and
the proportion of reviews reporting issues increased over time
(Table S1 in Multimedia Appendix 1).

Discussion

Principal Findings
This review considers spontaneous user feedback on publicly
available apps, reflecting real-world experiences with app-based
mental health tracking. Reviews tended to be positive and

suggested that simple user experiences, customizability,
interconnectivity, and sophisticated data visualizations are
desirable and impactful features of health tracking. These
findings validate and elaborate on a systematic review of user
feedback in academic studies [8]. Similar to the feedback
generated in research settings, user reviews described how
individuals with depression used app-based health tracking to
identify trends, track progress, and communicate with their
therapists. User reviews have also emphasized the need for apps
to be customizable and context sensitive. The similarities among
these findings are encouraging, suggesting that previous
laboratory-based studies on apps for mental health management
[50-56], which were largely hypothetical or limited in time
frame, yielded externally valid themes. This analysis of user
reviews based on these findings provides additional details,
practical insights, and specific design considerations that have
not been discussed in academic publications.

Design Considerations
The review content provided additional details that were not
described in peer-reviewed studies, which may be useful when
designing and implementing mental health–tracking features
for mobile apps (Textbox 2).

Textbox 2. Design considerations for mental health–tracking apps.

Designing impactful health-tracking mechanisms

• Impactful designs should allow app users to...

• track data which is relevant to their own, highly individual experiences

• track multiple data streams, multiple times per day

• capture the context of the experiences or scores they reported

• review data over different time frames for different purposes

• strike a balance between ease of tracking and precision of the data; for example, by supplementing default responses with options for
additional detail

• capture and communicate health insights at a level which is appropriate for an individual’s health and digital literacy

Implementing impactful health-tracking mechanisms

• When planning for launch and implementation, app designers should consider the following:

• enable apps to be used in conjunction with other technical and nontechnical health resources

• minimize the potential for data loss through local and cloud storage, offline modes, backups, enabling manual downloads, and archiving

• ensure that apps work accurately across time zones

• address technical issues in a timely manner to mitigate impacts on data access and accuracy

• consider impacts to current users—especially with regard to data access—before upgrades and business model changes

First, reviews indicate that the content and granularity of tracked
data should be relevant to the individual user’s conditions, needs,
goals, and experiences, which may change across contexts and
over time. Many reviewers needed to record and visualize
multiple types of data simultaneously, multiple times per day.
However, the types of data that app users wished to track varied
from person to person, as did the relevant time frames over
which users wished to review their data. App reviews also
suggested conflicting preferences between the ease with which
data are recorded and the detail or precision with which data

can be captured. Some apps’ data-reporting mechanisms were
described as simple yet too generic to be useful, others were
highly detailed but too cumbersome to complete regularly. This
tension made it more difficult to address disparities in health
and digital literacy across the population [57]. App-based
health-tracking mechanisms must capture and convey health
information at a level that matches the needs and competencies
of a diverse intended audience [58].

Our findings imply a need for flexibility and choice in the level
of detail captured and conveyed during mental health tracking.
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However, apps should strive to avoid common pitfalls of health
communication, in which health information is presented in
ways that are too generic, technical, complex, abstract, or
didactic for users to interpret readily [59]. Apps should provide
flexibility in ways that maximize informational value
minimizing the cognitive effort involved in data entry and
interpretation [13]. App reviews suggested several ways to
achieve this balance. Responsive recommendations when
tracking emotions, such as suggesting nuanced synonyms based
on an initial entry, may allow users to explore and capture
detailed data quickly without having to search through long
lists. Searching, scrolling, and zooming functions on
visualizations may allow users to view data, and therefore
patterns, over time frames that are personally relevant. Finally,
options to “dig deeper” into visualized data, for example, by
clicking on a data point to reveal additional details, analysis,
and contextual information, may be beneficial to users who
require more detail without overwhelming those who would
struggle to interpret it.

Reviews have also demonstrated that the contextual diversity
of an app’s target audience leads to additional technical and
implementation challenges. App users described having multiple
technical and nontechnical health resources at their disposal
(eg, other apps, wearables, caregivers, and health care
professionals); therefore, mental health–tracking apps should
be compatible with these resources when possible. It is important
for app reviewers to report data at convenient times soon after
the occurrence of meaningful events. Connectivity issues, such
as intermittent internet access, sometimes prevented timely data
input, and offline modes were requested in reviews. Many
reviewers have reported data loss owing to technical issues or
app upgrades. Designers should consider options to prevent
data loss, such as cloud storage, regular backups, or manual
downloads and archiving. Finally, the reviewers reported several
instances in which the app updates and changes to an app’s
business model affected their health-tracking practices. Several
apps have changed their feature offerings and business models
over the 4 years covered by this review, adding web-based
communities, digital cognitive behavioral therapy packages,
and remote therapy platforms. This pivot and subsequent
expansion of paywalls made tracking unaffordable for many
reviewers and caused users to lose access to longitudinal data.
App providers should be conscious of the ethical implications
of their product development and business decisions, particularly
when these decisions may affect data access [60], as changes
to app features or payment plans could adversely affect users
who have integrated the app into their long-term health
management strategies.

Strengths, Limitations, and Future Work
Unlike previous studies on data visualization preferences, this
study analyzed spontaneous, user-generated data to understand
real-world perspectives, experiences, and challenges with
depression self-management apps. This approach has the
potential to produce insights with greater external validity than
those obtained in laboratory settings. However, this method
also has several limitations. An advanced, reproducible search

method does not exist for Google search engines or app stores;
therefore, this review did not include all available depression
management apps. It is plausible that the location and search
history of the reviewers who conducted these searches may have
influenced which apps were identified and included in this
review. This review also inadvertently included user reviews
both before and during the COVID-19 pandemic, which had
strong adverse effects on global mental health [61-63]. Digital
interventions have been widely recommended for the population
during this time [64]. All included apps were released before
the pandemic, and we opted not to expand the pool of included
apps in our updated search, in part, to mitigate the pandemic’s
confounding effects on app design. However, the pandemic may
have influenced app design and review content.

The use of app reviews has also resulted in a relatively poorly
characterized source population compared with purposively
selected participants in academic research. Previous studies
have described how experience with remote monitoring
technology health status, cultural context, health and digital
literacy, and other factors moderate user preferences for
visualization designs [8,11]. It is important to consider the data
through this lens to understand the potential sources of bias and
generalizability of our findings.

Many reviews explicitly compared an app to past experiences,
in which another app did not meet the reviewer’s needs.
However, reviews of the included apps were generally positive,
suggesting that users less frequently provided negative reviews
when an app did not meet their needs. As a result, the content
reviewed here may reflect a bias toward positive experiences.
In addition, the duration of app use was unclear in most reviews.
Future work should explore the features that yield positive first
impressions and those associated with long-term app adherence.

It is also impossible to directly assess the health, digital, or data
literacy of the reviewers. However, to generate the included
content, users must have sufficient literacy to identify,
download, use, and review health apps on a smartphone.
Therefore, we presume that digital and health literacy in this
population is moderate to high. Many reviewers requested
sophisticated reports and visualizations or wished to export and
analyze their data independently. This exceeds the expected
data literacy of the general population [65], indicating a selection
bias. Therefore, the results should be interpreted with caution
in populations with low health, digital, and data literacy.

Conclusions
Data visualizations support depression self-management when
they align with the users’ individual needs and goals. To achieve
this alignment, personalized data entry mechanisms and
visualization content are often desired or necessary. These
heterogeneous preferences pose a challenge for app developers,
and further research should prioritize features based on their
importance and impact on service users. Despite the limitations
of the review-based content analysis, it contains readily
attainable, free, and externally valid insights that complement
formal qualitative research.
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