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Abstract

Background: Medication adherence is a global public health challenge, as only approximately 50% of people adhere to their
medication regimens. Medication reminders have shown promising results in terms of promoting medication adherence. However,
practical mechanisms to determine whether a medication has been taken or not, once people are reminded, remain elusive.
Emerging smartwatch technology may more objectively, unobtrusively, and automatically detect medication taking than currently
available methods.

Objective: This study aimed to examine the feasibility of detecting natural medication-taking gestures using smartwatches.

Methods: A convenience sample (N=28) was recruited using the snowball sampling method. During data collection, each
participant recorded at least 5 protocol-guided (scripted) medication-taking events and at least 10 natural instances of
medication-taking events per day for 5 days. Using a smartwatch, the accelerometer data were recorded for each session at a
sampling rate of 25 Hz. The raw recordings were scrutinized by a team member to validate the accuracy of the self-reports. The
validated data were used to train an artificial neural network (ANN) to detect a medication-taking event. The training and testing
data included previously recorded accelerometer data from smoking, eating, and jogging activities in addition to the
medication-taking data recorded in this study. The accuracy of the model to identify medication taking was evaluated by comparing
the ANN’s output with the actual output.

Results: Most (n=20, 71%) of the 28 study participants were college students and aged 20 to 56 years. Most individuals were
Asian (n=12, 43%) or White (n=12, 43%), single (n=24, 86%), and right-hand dominant (n=23, 82%). In total, 2800
medication-taking gestures (n=1400, 50% natural plus n=1400, 50% scripted gestures) were used to train the network. During
the testing session, 560 natural medication-taking events that were not previously presented to the ANN were used to assess the
network. The accuracy, precision, and recall were calculated to confirm the performance of the network. The trained ANN
exhibited an average true-positive and true-negative performance of 96.5% and 94.5%, respectively. The network exhibited <5%
error in the incorrect classification of medication-taking gestures.

Conclusions: Smartwatch technology may provide an accurate, nonintrusive means of monitoring complex human behaviors
such as natural medication-taking gestures. Future research is warranted to evaluate the efficacy of using modern sensing devices
and machine learning algorithms to monitor medication-taking behavior and improve medication adherence.
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Introduction

Background
Over 3 decades of international research has indicated that
complete models of human health comprise complex interactions
of biological, behavioral, and environmental factors. While
substantial technological advances exist in the study of the
biological and environmental bases of diseases, there have been
relatively minor advances in technologies for characterizing
human behaviors that influence health. Technological devices
have pervaded and revolutionized much of our social and private
lives, yet their implementation and use in health care remain
sparse. In particular, the innovative use of existing, widely used,
and commercially available technologies to influence
health-promoting behaviors has been underexplored. Adapting
smart technologies, such as phones and watches, has the
potential to initiate more effective health-promoting
interventions for behaviors such as weight loss, physical activity,
and medication adherence. Adapting these devices to promote
healthier behavior requires solving the crucial problem of
characterizing and monitoring human behavior in a way that
will be useful, unobtrusive, and personally relevant. Once
resolved, the subsequent steps in developing optimal and
personalized interventions can be explored.

Better understanding of behavioral activities such as eating,
smoking, sleeping, exercising, and medication taking can have
a substantial impact on population and individual health, with
the potential to significantly reduce overall health care costs
worldwide. In this study, we focused on the global public health
challenge of medication adherence, as only approximately 50%
of people adhere to their medication regimens [1]. Medication
adherence, defined as taking medicines according to decisions
agreed upon between prescribing health care professionals and
patients [2,3], is a complex human behavior critical for the
management of chronic health conditions. Studies have
identified forgetfulness as the main reason for nonadherence to
many long-term medicines [4]. To address forgetfulness,
findings from a meta-analysis of medication adherence
interventions among adults demonstrated that linking medication
taking with existing daily routines and using behavioral
strategies (eg, prompts to take medication) are the most effective
approaches to promote adherence [4]. Smartphone apps and
other technology-based reminders have also shown promising
results in promoting medication adherence [5-8]. However,
practical mechanisms to determine whether a medication has
been taken or not, once people are reminded, remain elusive.

Different methods, both direct and indirect, exist to measure
whether a medication has been taken. However, none are
considered a gold standard. Direct measurements, such as
clinical biomarker specimens or metabolites from
pharmaceutical metabolism and direct observations of
medication taking, can be expensive and impractical, especially

in large population settings [9]. Indirect methods, such as pill
counts, electronic monitoring, and self-reporting, offer simpler
alternatives but, at best, approximate adherence through proxy
data that can be initially overestimated with even less reliability
over time [10]. An ideal method to measure medication
adherence should be accurate, affordable, and practical (ie, easy
to implement).

Recent advances in sensor technology and artificial intelligence
(AI) present an innovative opportunity to measure medication
adherence objectively, unobtrusively, and conveniently.
Wearable devices such as smartwatches may offer the platform
to observe medication adherence [11-13]. From a modest 37
million units in 2016, smartwatch shipments worldwide are
projected to increase by 253 million units by 2025 [14].
Smartwatches are likely to become as pervasive as cell phones,
as their prices continue to decline and they become more
advanced with additional sensors and mobile health applications.
Anticipating this trend, our team investigated smartwatch use
not only for medication reminders but also as a strategy for
monitoring medication adherence. In this report, we present an
artificial neural network (ANN) approach [15] that can detect
the complex behavior of medication taking, called the natural
medication-taking event (nMTE), with as high as 95% accuracy
using sensor data available from common smartwatches.

Previous Work
The use of sensors to automatically detect human activities was
pioneered by the work of the Neural Network house and was
reported in the late 1990s [16-19]. Several studies have
illustrated how smartwatches can be used to monitor and detect
human motions of interest, such as smoking, [20-23] or falls
among older adults [24-27]. Independent reports [13,28-32]
have also confirmed the usability of smartwatches to detect
other human motion behaviors, such as eating, physical activity,
and foot movement. In the last decade, inspired by the
introduction of smart wearable devices, human activity
recognition has expanded to include activities such as cigarette
smoking [20,22], falls [33-35], and sleep [36,37]. Sleep activity
has been studied further using sensor data obtained from
electroencephalograms and electromyogram devices to develop
neural network models [38]. To detect medication taking,
numerous approaches and technologies have been introduced,
including experimental devices worn on wrists [15,39-41],
sensors worn around the neck to detect swallowing [42-44], and
vision modules embedded in smart environments such as

Microsoft’s EasyLiving project. [45,46], The EasyLiving project
showcased the early investigations into context-aware computing
using an array of video-capture devices instead of more
traditional physical sensors. By using several vision modules
in each room, the system could identify motions, people,
gestures, and the surrounding environment. The project also
focused on the geometric relationships between people, places,
and things to build context and form interaction information
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that would associate objects with their likely use, which could
later be used in a more intelligent system for behavior prediction.
Although vision-based medication adherence monitoring is a
viable human activity recognition method, users’ privacy
concerns and the identifiable nature of the data were strong
deterrents to the adoption of this method. In contrast,
sensor-based smartwatches provide a scalable and practical
platform for convenient, unobtrusive, and secure study of human
behavior in natural settings (eg, people’s homes). Our previous
work highlighted the potential of smartwatches to monitor
medication-taking events (MTEs) under protocol-guided
(scripted) conditions (scripted MTEs [sMTEs]), where all
participants followed the same method of taking their medication
(eg, use of the right hand to perform most activities) [15];
however, an nMTE may significantly depart from the scripted
method. For example, a person may prefer to take the pill with
their right hand while drinking water with their left hand. To
establish a more practical application of this technology, we
explored the feasibility of detecting unscripted events (nMTEs),
which extends our previous study [15]. The nMTE may be more
generalizable, and thus, it is a more powerful approach to
accurately monitor medication taking and measure medication
adherence. The nMTE model has the potential to be an effective
intervention tool that can increase adherence, reduce accidental
instances of overmedication, and be used for medication
adherence monitoring by support persons or health professionals.

Objective
The purpose of our study was to test the capabilities of our
detection model; we used sensor data from MTEs (sMTEs and
nMTEs), other similar activities (eg, eating and smoking), and
a dissimilar activity of jogging.

Methods

Participant Recruitment and Data Collection Process

Overview
The study was conducted during the height of the COVID-19
pandemic and required substantial departure from the traditional
means of engaging human participants in sensor recognition
studies, which have primarily occurred in laboratory settings.
The participants (N=28) were recruited using snowball sampling.
The inclusion criteria were adults willing and able to complete
the study protocol following training. The exclusion criteria
were any type of movement disorder (eg, Parkinson disease) or
paresis (eg, muscular weakness owing to conditions such as
stroke). An appointment was made with each potential
participant to explain the purpose, benefits, and risks of the
study and to address any questions or concerns. After obtaining
informed consent, the participants completed a demographic
questionnaire and then received a packet with a smartwatch and
phone, 2 charger cables, a user manual, a pill bottle, and placebo
medication. The user manual was presented and discussed in
detail to the participants. Before data collection, the research
team members had an internet-based meeting with each
participant to train them to collect and transfer the data, which
culminated in participants properly demonstrating the activities.

Collected Data
Figure 1 depicts the smartphone and smartwatch with triaxial
sketches. The smartwatch was used to collect data, and the
phone was used to upload the data to cloud storage. The
participants wore the watch on their right wrist for sMTEs and
on their wrist of preference for nMTEs. The collected data
contained hand-motion accelerometer sensor logs of the triaxial
values recorded by the watch at a sampling rate of 25 Hz. The
data included the time stamp, orientation, and acceleration of
the hand during medication-taking activities. The xyz-sensor
values were logged into a CSV file by the medication-taking
app on the watch. The file was periodically and asynchronously
moved to the phone via Bluetooth.

Figure 1. An illustration of smartphone and smartwatch accelerometer axes.

Data Collection Protocol
When the participants received their study supply packet, we
collected demographic data and scheduled a protocol training
session. Following the medication-taking training sessions, the

participants independently completed the data collection in their
homes. The exercise comprised the first week (ie, 5 days) of
performing medication-taking behaviors using the participant’s
natural way of taking medications (nMTEs) and the second
week of performing medication-taking behaviors according to
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a scripted protocol (sMTEs) [15]. Each participant was directed
to record 10 nMTE gestures per day for the first 5 days and then
10 sMTE gestures for the next 5 days. In total, 1400 nMTEs
and 1400 sMTEs were collected, tallying 2800 gestures.

To enable seamless transfer of data from the watches to cloud
storage, each watch was paired with a smartphone. A custom
Android application called MedSensor, a software developed
by the research team, was installed on both the watch and phone.
At the participants’convenience, the watch data were transferred
to the phone via Bluetooth connectivity.

Closure
After collecting and transferring 10 days of collected data, the
participants returned the smartwatch and phone to the study
project coordinator and received a US $25 gift card as an
incentive. The smart devices were sanitized according to the
Centers for Disease Control and Prevention (CDC) guidelines
before use by the other participants.

Ethical Considerations
The study was reviewed by the University of South Carolina
Institutional Review Board and received exemption from Human
Research Subject Regulations (Pro00101203). Potential
participants were informed of the study purposes, potential risks
and benefits, and their rights as research participants, including
the voluntary nature of participation. All participants provided
verbal consent before study participation.

Data Preparation and Annotation

Overview
The proper use of data in supervised machine learning (ML)
approaches requires reliable annotation of the data. The process
required a supervisor (an expert) to identify and define the
gestures of interest to be used during the training of ML models.
To develop an understanding of which signal constitutes an
MTE, in our previous work, we used the sMTE data collected
to understand the individual components of the
medication-taking gesture. The exact details of the scripted
gesture can be found in our previous report [15]. Using this
information, the team members identified and annotated the
individual gestures of the nMTEs. The process of gesture

identification and annotation was accelerated by having
participants self-report MTEs on their smartwatches that
included time stamps indicating the beginning and ending of
each MTE.

The raw data files logged at the cloud repository consisted of
a time stamp that included hours, minutes, seconds, and
milliseconds; a date that included day, month, and year; and the
x, y, and z components of the accelerometer data. The second
file contained the time stamps corresponding to the start and
end of each MTE reported by the participant. In theory, the
self-reported MTE should be sufficient to identify the gesture
of interest (ie, medication taking). However, in practice,
participants may erroneously report the activity, or the time
stamps may only approximate the correct start and end times
of the activity. Therefore, each gesture is visually confirmed to
ensure high-quality data. A separate utility program was
developed to facilitate this process and to create the final usable
data [47]. After this final step, the data files were presented in
a usable format for training and testing the AI model.

Secondary Data Acquisition and Preparation
This study integrated accelerometer data from 4 different human
activities (Table 1), with the primary focus on recognizing
nMTEs as recorded by smartwatches (Polar M600, Asus
Zenwatch, Motorola, and TicWatch), as described in the
previous section. The sMTE data were recorded by each
participant wearing the smartwatch on the right wrist, then
sequentially performing the mini-activities of medication taking
(opening the bottle, dispensing pills to the right palm, placing
pills in the mouth with the right hand, drinking water with the
left hand, and closing the bottle). For the nMTE, the participant
performed the same mini-activities in any sequence that is
natural to them (ie, how they would typically take medicine).
Smartwatch data for other behaviors (ie, smoking and eating)
consisted of data reported in previous studies [48,49], whereas
the MTE data were collected in this study using the protocol
described in the previous section. The jogging data set, by
contrast, is open public data from the Wireless Sensor Data
Mining Laboratory [50] that were recorded using a smartphone
strapped to the waist of the participant.

Table 1. Summary of all the data sets used in the study.

Participants, nGestures, nData points, nActivity

282800824,000Medication

65434272,822Eating

12127962,823Smoking

275883287,461Jogging

Data Preprocessing and Standardization
Before integrating data from multiple studies, several
normalization and standardization steps were performed.
Specifically, attention was paid to the consistent standardization
of the accelerometer data and sampling rate of the data. Because
the devices used for data collection across all studies were
Android devices (vs Apple devices), the sensor data followed

a common frame of the x-, y-, and z-axes. As the next step, all
data sets were processed to adhere to a sampling rate of 25 Hz
by excluding data points (in the case of oversampling) or
resampling based on the interpolation of the data (in the case
of undersampling). To normalize for the different numbers of
gestures per activity, the individual gestures were represented
multiple times in our data set to provide a balanced
representation of activities.
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Development of the ANN

Neural Network Platform and Architecture
The human activities of interest in this study—medication
taking, eating (pizza), smoking, and jogging—each included a
sequence of mini-activities that have temporal properties. The
temporal property is a crucial gesture sequence component in
the complex activity recognition. For example, the MTE
comprised a series of mini-activities, namely (1) open-bottle
and dispense-medicine; (2) hand-to-mouth, pill-into-mouth, and
hand-off-mouth; and (3) pick-up-water, drink-water,
lower-cup-to-table, and close-bottle. The temporal property
(time stamp in this case) determines the sequence of the
mini-activities, thereby determining the uniqueness of each
complex activity. Considered through the lenses of a linguist,
where the mini-activities form the words and the time stamp is

the order of activities, the meaning or semantics of the full
activity was determined by the syntax of this activity sentence
[51]. On the basis of the architecture that incorporates long-term
memory, the long short-term memory (LSTM) neural network
is the best candidate for the implementation of human activity
recognition systems. An LSTM neural network is an artificial
recurrent neural network (RNN) architecture with feedback
connections that facilitate awareness of past activities at the
present time of the activity [52,53]. Figure 2 illustrates a typical
LSTM cell where xt is the input vector to the LSTM unit; ht is
the hidden state vector (or LSTM unit output vector); ct is the
cell state vector; and ct−1 is the cell input activation vector. In
this study, our model contained 2 fully connected and 2 LSTM
layers (stacked on each other), with 64 units each. The learning
rate was set at 0.0025.

Figure 2. The long short-term memory cell can process data sequentially and keep its hidden state through time (reproduced from Chevalier [54], which
is published under Creative Commons Attribution 4.0 International License [55]). c: memory cell; h: hidden state or output vector of the LSTM unit;
x: input vector to the LSTM unit; tanh: activation function; subscript t indexes the time step.

Training and Testing Procedure
The LSTM network was trained for 150 epochs using the
annotated data while keeping track of accuracy and error.
Network training is a process in which a ML algorithm is fed
sufficient training data to learn from. The training requires
multiple passes on the training data. Epoch refers to the total
number of iterations of all the training data in one cycle for
training the ML model. The batch size was maintained at 1024;
batch size refers to the number of input samples that are passed
to the network at once. The train and test data sets were
partitioned in an 80:20 ratio, respectively, after the balancing
procedure. We applied L2 regularization (Ridge Regression) to
the model. The L2 penalty/force removes a small percentage of
weights at each iteration, ensuring that weights never become
zero. Consequently, the penalty reduces the chance of model
overfitting.

Each recording data session may contain hours or days of sensor
data. The immediate question to answer is what portion of this
recording should be presented to the neural network to identify
an activity. The LSTM network expects the training data input
of fixed length, also referred to as the “window size.” In this
study, a window size of 150 points (ie, 150 rows of sensor data
logs) was empirically determined to provide an acceptable

performance. At a sampling frequency of 25 Hz, this translates
to approximately 1.5 seconds of contiguous recorded data. While
the window size represents the portion of the raw data that
should be in direct view of the ANN at the time of classification,
any relevant past contextual information is saved in the internal
cell of the LSTM architecture. The temporal exposure of the
LSTM-RNN can be accomplished in various ways, including
a sliding window of appropriate size. In this study, the sliding
window size of 150 points was selected as the optimal
compromise between the performance, simplicity, and
responsiveness. The sliding window with overlap significantly
transforms and reduces the training data set. Furthermore, the
transformation assigns the most common activity (ie, mode) in
the exposed window of 150 points as a label for the sequence.
This is necessary because some windows may contain ≥2
activities, but the mode is considered to be the dominant or
overriding activity. Consequential to the input definition, the
data were reshaped into sequences of 150 rows, each containing
x, y, and z values with 10 points of overlap between 2
consecutive windows. The desired output of the system was
based on one-hot encoding of the labels to transform them into
numeric values that can be processed by the model [56,57].
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Evaluation of the Trained Network
During the training phase of an ANN, a single metric of
performance needs to be defined to assess the network
performance. The network performance metric is used by the
operator to direct the network and improve the overall
performance. In this study, we evaluated the performance of
the classifiers using the accuracy metric defined in the equation
1. In equation 1, true-positive (TP) results represent the correctly
classified positive examples; true-negative (TN) results represent
the correctly classified negative examples; false-positive (FP)
results represent negatives misclassified as positives; and
false-negative (FN) results represent positives misclassified as
false.

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

As a network performance measure, the accuracy does not
account for the bias arising from unbalanced data sets. To
remove the effect of unbalanced data (unequal representation
of different activities), data within each activity were repeated
to arrive at an approximately equal number of representations
for medication taking, eating, smoking, and jogging. Despite
the adjustments to enforce data set balance, some data sets
remained larger than others, potentially translating into a biased
favor for the majority classes. Therefore, the study team
considered the following additional evaluation criteria: precision,
recall, F-measure, and specificity. Precision indicates the
fraction of positive predictions that are truly positive. Recall
(positive) indicates the fraction of all positive samples that are
correctly predicted as positive by the classifier (TP rate). Recall
(negative) indicates the fraction of all negative samples that are
correctly predicted as negative by the classifier (TN rate).

Below are the formulas to compute the metrics:

Precision = TP / (TP + FP) (2)

Recall = TP / (TP + FN) (3)

F-measure is the combination of precision and recall. This is
calculated as follows:

F-measure = ([1+ β2] × recall × precision) / (β2 recall
+ precision) (4)

where β is a weighting factor and a positive real number. It is
used to control the importance of recall and precision.

Specificity = TN / (TN + FP) (5)

Results

Sample Demographics
Recruited participants (N=28) had a mean age of 27.25 (range
20-56) years, and 57% (16/28) were male. The majority were
college students (21/28, 71.4%), single (24/28, 86%), and
working at least part time (17/28, 61%). The sample represented
racial diversity with 43% (12/28) Asian and 43% (12/28) White
individuals, 10% (3/28) belonging to ≥2 races, and 4% (1/28)
African American individuals [58]. Most participants (23/28,
82%) were right-hand dominant, whereas only 1 (4%) participant
was ambidextrous.

Visualization of Medication-Taking Protocol Gesture
As the first step in performing activity recognition with wearable
devices, a more detailed understanding of the gesture of interest
needed to be developed. Figure 3 represents an example of an
entire sMTEs recorded from a right-hand dominant participant.
After careful and repeated examination of the gesture, sequential
segments of the gesture were identified (Figure 3). When
considering the portion of the gesture corresponding to water
drinking (phase C), the gradual increase in the accelerometer’s
y-axis depicts the beginning of the drinking phase. It can be
used both as a hallmark of an MTE and for quantifying drinking
duration.

Our medication-taking study consisted of sMTEs and nMTEs.
We based the scripted protocol on the natural behavior observed
in most of our preliminary studies. Nevertheless, people’s
nMTEs varied from the sMTEs as illustrated in Figures 4A, 4B,
and 4C.

The visualizations in Figures 5-8 represent the unique signatures
of the following activities: pizza eating, medication taking,
smoking, and jogging activities.

It is important to highlight the challenging task of identifying
nMTEs, given the gesture diversity in mini-activities among
different participants. For instance, the simple method of
drinking water between 2 participants can vary significantly as
illustrated in Figures 4B and 4C. The participant in the Figure
4B performed the task of drinking water with a sudden removal
of glass from the mouth, and the participant in Figure 4C
removed the glass from their mouth more gradually. These
differences in the individual mini-activities are the root of the
challenges associated with smartwatch gesture detection.
Nevertheless, the combined activities of medication taking are
distinctive from the other activities as illustrated in Figures 5-8.
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Figure 3. Atomic segmentations of the complex activity, the medication-taking event, corresponding to (A) open-bottle and dispense-medicine, (B)
hand-to-mouth, pill-into-mouth and hand-off-mouth, (C) pick-up-water, drink-water, lower-cup-to-table and close-bottle, and (D) after the medication.

Figure 4. Illustration of medicine-taking protocol differences between (A) scripted gesture from user1, (B) natural gesture from user1, and (C) natural
gesture from user2. The 3 recorded sessions illustrate the diversity in natural gestures and potential departure from the scripted gestures.

Figure 5. Three bites of pizza-eating activity.

Figure 6. Single medication-taking event.
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Figure 7. Single puff of smoking gesture.

Figure 8. Jogging exercise gestures.

Validation and Annotation of MTEs
The study of human behavior using wearable devices has several
advantages over the traditional self-report methods. Specific to
medication taking, self-reported adherence is known to be
overestimated [59]. In comparison to self-reports, wearable
devices can provide additional useful information such as the
time of the day the medication was administered and the number
of times the medication was taken in a day without incurring
additional time, effort, or cost to the user. The natural gestures
duration ranged between 5 and 331 seconds, with a mean of
18.47 (SD 14.34; median 17) seconds per gesture. The scripted
gestures duration ranged between 4 and 686 seconds, with a
mean of 20.11 (SD 20.65; median 18) seconds per gesture.
Considering the average time needed to complete an MTE,
outliers can be examined. We considered gestures longer than
100 seconds or shorter than 8 seconds as outliers. There were
6 scripted gestures and 2 natural gestures of a duration of ≥100

seconds. There were also 63 scripted gestures and 40 natural
gestures of a duration of ≤8 seconds. In this study, we considered
outliers (both natural and scripted) as gestures with a duration
of ≤8 seconds for the lower category or ≥100 seconds for the
upper category. To determine the outliers, we considered the
mean and SD for natural gestures at 18.47 (SD 14.34) seconds
and scripted gestures at 20.11 (SD 20.65) seconds. Fewer
outliers were observed in the sMTEs than in nMTEs. For the
lower category, a random sample of 20 out of 103 gestures was
examined, and all were invalid gestures, indicating that the users
probably annotated the start/stop gestures in quick succession.
By contrast, for outliers of ≥100 seconds in duration, most
contained ≥1 MTE gestures in most cases. To better understand
the cause of these temporal discrepancies and therefore, validate
or invalidate the reported gestures, each recording session was
examined by a team member for validity. The results are
presented in Table 2.
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Table 2. Analysis of upper-category outliers in seconds.

CorrectionObservationsDuration
(seconds)

Participants

Individual MTPa events were separated

by an MLb supervisor.

The participant reported 7 consecutively taken medications as 1
medication event.

3711

The unrelated portions of the recording
were trimmed.

One MTP event was observed with some unrelated activities at the
beginning or end of the recording.

1621, 2, 3, 4, 5, and 6

—cComprises random activities that do not match medication-taking
gesture pattern

2793

aMTP: medication-taking protocol.
bML: machine learning.
cSignificant aspect of human gestures (that in simulation of human gestures, participants are still bound to perform other random activities, probably
out of interruption or disruption). This emphasizes the natural medication exercises where every activity happens in the context of other activities.

ANN Training and Testing
As an initial step in the training of a neural network, examining
the learning curve can be instrumental. Figure 9 illustrates the
learning curve of the designed LSTM-RNN after the proper
treatment of the outlier data. The figure shows the training
accuracy (depicted in green) for the training and testing sets
(dashed and solid lines, respectively). Here, the consistently
increasing values of accuracy is an indication that the network
is successfully learning the classification task. The agreement
of accuracies reported during the training and testing data sets
indicates that the network is successful in generalizing the
problem and not performing memorization of the training
patterns (avoiding overfitting). The patterns shown in red

describe the error functions for the training and testing data sets
(dashed and solid lines, respectively). A decreasing value of the
error function is a further indication of successful learning, with
a gradually plateauing pattern that indicates a saturated training
session. Table 3 summarizes the performance metrics for the
final trained neural network that used a fixed window size of
150 units. The accuracy, precision, recall, F-measure, and
specificity, as described by the equations 1, 2, 3, 4, and 5,
respectively, are presented in Table 3. The test accuracies for
eating, jogging, medication, and smoking were 94.3%, 100%,
93.6%, and 98.6%, respectively. The average performance
attained was 96.6%. To explore the full nature of
misclassifications, the confusion table was examined (Table 4).

Figure 9. Training plot for the window size of 150 units. The configuration resulted in the best performance among the different models.
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Table 3. Summary metrics for the best performing configuration of window size of 150 units.

Accuracy (%)Specificity (%)F-measure (%)Recall (%)Precision (%)Participants, nActivity

93.695.194.39296.128Medication taking

94.394.885.79280.26Eating

98.699.682.476.988.812Smoking

10010010010010027Jogging

96.697.490.690.391.3N/AaAverage

aN/A: not applicable.

Table 4. Medication-taking protocol (MTP) or non-MTP confusion matrix for the window size of 150 units. The configuration produced the best
performance among the different models.

Predicted label, n (%)

ANN non-MTP (n=12,932)ANNa MTP (n=7683)

True label

708 (5.5)7412 (96.5)True MTP

12,224 (94.5)271 (3.5)True non-MTP

aANN: artificial neural network.

Discussion

Principal Findings
This study aimed to examine the feasibility of detecting nMTEs
using smartwatches. Studying human activities using smart and
wearable devices has numerous advantages over the traditional
approaches. Wearable devices provide the advantage of
unobtrusively, continuously observing human behavior in their
natural settings, with little burden on the user. The collected
sensor data from these devices can be used to validate the data
reported by the user, thereby improving the accuracy and
completeness of the self-reports. In this study, participants used
the smartwatch to report the beginning and end of their MTEs.
Errors in the participants’ self-reported MTEs were identified.
Some self-reported MTEs had implausibly short or long
durations. By validating the digitally recorded temporal gestures,
we demonstrated the ability to correct erroneous self-reports,
thereby improving the quality of the reports. Furthermore, the
temporal signature that has been reported by the array of sensors
available on wearable devices can provide a plethora of
additional information such as the temporal variation of an
activity for a given user or across a population of users. For
example, in our study, we demonstrated that nMTEs were
completed in an average of 18 seconds, but there were distinct
differences across participants. Such a comparison of behaviors
provides several dimensions along which the study of human
behavior can be expanded.

While the ANN’s overall best performance of 96.6% accuracy
in identifying MTEs from other activities was good, there are
other nuanced configurations that can be explored. In addition
to the sliding window size, it is possible to manipulate the
hyperparameters, such as the learning rate, number of LSTM
units, window step sizes, and batch sizes, to achieve an even
better performance. We will consider these in future

experiments. In addition to the expanded information that can
be obtained from these devices, the ability to automatically
detect and identify an nMTE with high accuracy will be
beneficial. The automatic detection of an MTE event can be
used as the foundation for both monitoring MTEs and improving
medication adherence. In the latter case, the nondetection of an
nMTE offers the opportunity to alert patients or support persons
who missed medications to improve adherence and the health
outcomes associated with improved medication adherence.
Improved medication adherence has the potential to significantly
reduce morbidity [60-62], mortality [3,62], and health care costs
[60,63-65]. Hence, detecting nMTEs using smartwatches has
exponential utility.

This study addressed several gaps and limitations of other
studies. Fozoonmayeh et al [66] used Android LG Watch Sport
smartwatches with cellular capability, eliminating the need for
a smartphone to transfer data to the cloud repository. The study
also relied on both the accelerometer and gyroscope sensor data
to detect motions. Data collection and subsequent transmission
to the cloud storage were completed in real time, requiring the
watch to have constant data connectivity. Constant connectivity
uses large amounts of energy; therefore, battery life may be
problematic and data integrity can be compromised by poor or
noisy connectivity. Our study simplified data collection by
adopting an offline approach. However, it relies on a paired
smartphone to relay the data to cloud storage. Importantly, our
smartwatch app, MedSensor, performs preliminary data
annotation at the edge, that is, the data origination point, which
makes further downstream automation easier.

The Medhere study [39] addressed poor medication adherence
by using a smartwatch accelerometer and gyroscope sensors to
monitor a series of actions. While the study also considers the
medication activity as a complex activity composed of atomic
activities, it applies random forest ML algorithm to classify
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several discrete actions, including medication intake, with an
average precision and recall across all activities of 0.91 and
0.93, respectively. Our study implemented an LSTM network
algorithm with a similar average precision and recall of 0.91
across all activities. The LSTM injects the benefit of context as
well as the architecture that suits the time series of human
activity data. The Medhere study engaged 5 participants; in
contrast, MedSensor engaged a larger diverse group of 28
participants.

A separate study used the Kinect depth camera to automatically
generate templates for signal matching during the training phase
of an inertial sensor [67]. Only 2 actions (“twist-cap” and
“hand-to-mouth”) were tracked by the inertial sensor to identify
the individual pill-taking signatures among the 5 participants.
The approach required a Kinect depth camera during training,
and the training was user specific. Despite the generally accurate
prediction scores, user-specific training does not lend itself to
practical scalability or generalizability across users.

Other notable medication adherence approaches include the
following: (1) the AdhereTech platform focuses on a stand-alone
cellular enabled bottle that transmits data in real time when it
is opened and incorporates SMS text messaging, phone calls,
and chime alerts and reminders to patients so that they do not
forget to take their medicine; (2) the Vitality GlowCap system
works with a smart cap that attaches to a medication bottle and
sends alerts to patients when to take their next dose; and (3)
PillsyCap is a smart-pill cap for prescription drugs [68]. The
PillsyCap uses Bluetooth to synchronize with a mobile app.
Although these approaches make it possible to adhere to
medication requirements, human activity recognition relies on
objects that are not worn on the human body. The reusability
of objects, such as smart caps, is another drawback because
each bottle must have its own cap. The cost of production of
such objects is ultimately higher than that of relying on reusable
wearable sensor devices, such as smartwatches. In addition,
smartwatches have multiple capabilities that make them
appealing as affordable and useful devices.

Limitations
The limitation of our approach, given the current state of the
technology, is the availability of data from a single hand.
Therefore, activities such as smoking that can be completed by
a single hand, may not be detected by a watch that is worn on
the opposite hand. Fortunately, because activities such as
medication taking are difficult to complete with a single hand,
a residual portion of the activity will always be present from
the perspective of a single watch. This problem can be easily
overcome with the presence of a sensing device on each hand.
Although not common presently, the arrival of smart wristbands,
rings, and other forms of wearable devices is likely to provide
a more complete picture of a person’s daily activities
[27,30,33,35,69].

The second limitation is the method by which people may wear
their watches. A watch can be worn in 4 distinct ways on the
left or right hand and inside or outside of the wrist. In this study,
we asked participants to wear their watch on their right hand
and on the outside of their wrists. However, sensor data recorded
by the same watch in any of the other 3 configurations will

produce related but undistinguishable signals by the ANN.
Consistently wearing a watch on the outside right-hand side is
critical at the current stage of our scientific development.
However, using the existing human body symmetry and the
relationship between the inside and outside of the wrists,
mechanisms of unifying sensor signals collected from any mode
of use can be developed as demonstrated previously [20]. This
will produce high-capacity models with broader experience to
recognize medication gestures regardless of the watch-face
orientation.

Future Implications
Our current protocol performed well. However, our future
investigations will benefit from 2 additional steps to our existing
protocol. The first step will collect calibration data during the
initial orientation session. Currently, our orientation consists of
familiarizing the participant with the watch, app, and use of the
app. In the future, we will incorporate a second step, which will
use this orientation session to collect data from a set of simple
activities (eg, touch toes, touch hips, and touch head) with the
watch worn on each hand to obtain useful participant-specific
data at baseline. By collecting data from left and right hands,
we can establish a more precise relationship between the right
and left hands for the given participants. Although perfect
human symmetry may indicate a 180° rotation between the 2,
natural human posture may create a departure from the ideal
180° symmetry. This information can be used to allow the user
to wear the watch in any preferred method and provide the
necessary information for the correction that is needed for the
existing right-handed ANN. We intend to add this step to our
protocol and conduct a future study with participants who are
taking their own medications in their natural environment.

In addition, as an ultimate objective, we aim to develop 1
application that can decipher numerous human activities to
establish correlative or causative relationships between activities.
For instance, medication-taking activity may occur at 8 PM
before sleep activity or 7 AM before breakfast eating activity,
or eating activity at 1 PM may subsequently be followed by
cigarette smoking. The ability to monitor the temporal
relationship between these events would be useful to provide
the much-needed context to further understand human behavior
and, therefore, to model useful health-related solutions or
provide real-time intervention reminders. To accomplish this,
we need to engage in a formal investigation of the optimal
viewable window size for an LSTM that is sufficient to
successfully decipher all activities of interest. In addition, there
exists some inherent parallelism between human activities and
the principles of written language. To fully leverage this parallel
analogy, human activities need to be examined in the more
fundamental fashion by decomposing complex activities further
into their most basic building blocks, referred to in this study
as mini-gestures. Our previous work [15,48] illustrates the
mini-gesture decomposition of the eating activity in relation to
other similar activities such as smoking. Furthermore, our study
also compared the medication activity against the jogging
activity, and our models confirmed little confusion between
medication taking and jogging. This could be explained by the
fact that the mini-activities of both complex dynamic activities
are largely different. Based on this observation, we speculate
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the accuracy of the system to increase notably if other natural
daily activities are included in our training and testing sets
because of their dissimilarity to medication-taking gestures.
Thus, our future goal is to develop a powerful and useful
application that can distinguish between a multitude of different
activities by recognizing the combined mini-gestures or
mini-activities of more complex behaviors and temporal
relationships.

Conclusions
Medication adherence is a complex human behavior that is
associated with chronic condition self-management. It remains
a global public health challenge, as nearly 50% of people fail
to adhere to their medication regimens. Automated detection
of medication-taking activities is of critical importance for
improving treatment effectiveness. The automatic detection of
medication-taking gestures will also help eliminate the burden
of self-reporting from the participants and provide a simpler

method of tracking MTEs. In this study, we demonstrated the
use of LSTM to detect and recognize mini-activities and
complex activities. We have demonstrated successful
identification of individual medication gestures with an accuracy
of approximately 93.6% when tested against activities that
substantially resemble medication taking, such as smoking and
eating, which share the common mini-gestures of
hand-to-mouth, hand-on-mouth, and hand-off-mouth.
Furthermore, we demonstrated the ability of the neural network
to distinguish MTEs from the similar activities of eating and
smoking and from the dissimilar activity of jogging. Our future
work will build on these successes by making small changes to
the protocol and further tuning the network hyperparameter
values. In the short term, we anticipate testing MedSensor with
people who are taking medications in their natural environment,
and our long-term goal is to develop a comprehensive app that
can accurately identify a multitude of human behaviors.
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