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Abstract

Background: Despite growing efforts to develop user-friendly artificial intelligence (AI) applications for clinical care, their
adoption remains limited because of the barriers at individual, organizational, and system levels. There is limited research on the
intention to use AI systems in mental health care.

Objective: This study aimed to address this gap by examining the predictors of psychology students’ and early practitioners’
intention to use 2 specific AI-enabled mental health tools based on the Unified Theory of Acceptance and Use of Technology.

Methods: This cross-sectional study included 206 psychology students and psychotherapists in training to examine the predictors
of their intention to use 2 AI-enabled mental health care tools. The first tool provides feedback to the psychotherapist on their
adherence to motivational interviewing techniques. The second tool uses patient voice samples to derive mood scores that the
therapists may use for treatment decisions. Participants were presented with graphic depictions of the tools’ functioning mechanisms
before measuring the variables of the extended Unified Theory of Acceptance and Use of Technology. In total, 2 structural
equation models (1 for each tool) were specified, which included direct and mediated paths for predicting tool use intentions.

Results: Perceived usefulness and social influence had a positive effect on the intention to use the feedback tool (P<.001) and
the treatment recommendation tool (perceived usefulness, P=.01 and social influence, P<.001). However, trust was unrelated to
use intentions for both the tools. Moreover, perceived ease of use was unrelated (feedback tool) and even negatively related
(treatment recommendation tool) to use intentions when considering all predictors (P=.004). In addition, a positive relationship
between cognitive technology readiness (P=.02) and the intention to use the feedback tool and a negative relationship between
AI anxiety and the intention to use the feedback tool (P=.001) and the treatment recommendation tool (P<.001) were observed.

Conclusions: The results shed light on the general and tool-dependent drivers of AI technology adoption in mental health care.
Future research may explore the technological and user group characteristics that influence the adoption of AI-enabled tools in
mental health care.

(JMIR Hum Factors 2023;10:e46859) doi: 10.2196/46859
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Introduction

Background
In spite of the growing efforts to create user-friendly artificial
intelligence (AI) applications, their use in clinical care remains
limited [1]. Barriers to the adoption of AI-enabled clinical
decision support systems (AI-CDSSs) can be found at the
individual (eg, end user’s lack of trust in the system),
organizational (eg, capacity to innovate), and system (eg,
political decisions) levels [2-4]. Often, the adoption of
AI-CDSSs fails because system and organizational requirements
are not met, and accordingly, tools do not become available to
potential end users [5]. The lack of regulatory oversight and
standardization of AI-CDSSs can create uncertainty in the field,
potentially leading to liability issues at the organizational and
system levels [5]. If the system and corporate requirements for
implementing a given technology are satisfied, their successful
deployment depends on the practitioner’s willingness to use
them. However, clinicians may be skeptical about using
AI-CDSSs because of concerns regarding the accuracy and
reliability of AI-generated decisions. Several frameworks and
theories have been developed to systematically study the
mechanisms influencing the implementation of technology in
practice [5-9]. The 2 most relevant models for individual-level
predictors are the Technology Acceptance Model (TAM) [10]
and the Unified Theory of Acceptance and Use of Technology
(UTAUT) [11]. The TAM aims to explain why a given
technology is rejected or accepted by the end user. It proposes
that system use is centrally driven by its perceived usefulness
and ease of use. Both beliefs are determinants of attitudes toward
use, which, in turn, influence use behavior [10]. The UTAUT
combines the principles of 8 technology acceptance models,
including the TAM. In addition to perceived usefulness (ie,
performance expectancy) and perceived ease of use (ie, effort
expectancy), it considers social processes (ie, social influence)

and demographic variables (ie, age and gender) as predictors
of use intention [11]. Accordingly, we focused on the UTAUT
as the most holistic use prediction model.

Several studies have already demonstrated the applicability of
the UTAUT in investigating the implementation of AI-CDSSs
[12-17]. However, only 1 study has examined the predictors of
the intention to use AI-enabled tools in mental health care [17].
The authors asked psychology students about their general
knowledge of and attitudes toward AI systems. The results
suggest a link between the perceived social norms, perceived
ease of use, perceived usefulness, and perceived knowledge
with students’ intention to use AI-enabled tools. However,
prospective and current mental health practitioners may have
varying levels of skepticism about implementing AI technology
for different purposes in their (future) practice. For example,
when presented with AI-generated feedback regarding diagnostic
or treatment decisions, they may be reluctant to accept AI-based
recommendations because of the far-reaching consequences of
erroneous predictions or because they feel undermined in their
role as therapists. At the same time, they may be open to
incorporating AI-generated feedback regarding their
interviewing techniques. Although research has begun to
examine practitioners’acceptance of AI-enabled tools in mental
health care, there is a lack of specificity in assessing use
intention, limiting the utility of these findings in informing
practice. This study sought to address this gap by examining
the intention to use two specific AI-enabled mental health tools:
(1) a psychotherapy feedback tool (FB tool) that analyzes data
from therapist-patient conversations and provides
performance-specific feedback to the therapist [18-21] and (2)
a treatment recommendation tool (TR tool) that uses voice
recordings and mood scores to generate recommendations for
psychotherapeutic support [22]. The research model is shown
in Figure 1.
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Figure 1. The research model is without control variables. The model is adapted from the preuse part of the model presented in the study by Venkatesh
et al [23]. In this study, we extended the original model by adding tool understanding and cognitive technology readiness as predictors of perceived
usefulness, perceived ease of use, and trust. AI: artificial intelligence.

The AI-Enabled FB Tool
Providing supervision and performance feedback during and
after psychotherapy sessions enhances trainees’ and therapists’
skills acquisition and retention [20,23]. However, these
processes are labor and cost intensive and thus rarely used in
training and clinical practice. Often, feedback is based on
trainees’ self-reports and is only available long after the therapy
session has concluded [20]. AI technology may help to reduce
this problem by providing continuous, immediate, and
performance-specific feedback to psychotherapists and trainees.
Over the past few years, several AI-enabled FB tools have been
developed and are already used in practice [24]. For example,
the Therapy Insights Model uses real-time chat messages
exchanged between therapists and patients to provide feedback
on topics covered in the session and generate recommendations

regarding topics that should be addressed in the following
session [18]. Counselor Observer Ratings Expert for
Motivational Interviewing uses audio recordings of motivational
interviewing (MI) sessions to generate feedback on
psychotherapists’ adherence to MI principles. The generated
feedback focuses on 6 aspects of MI fidelity: empathy, MI spirit,
reflection-to-question ratio, percent open questions, percent
complex reflections, and percent MI adherence [19]. The tool
chosen for this study was developed based on the Counselor
Observer Ratings Expert for Motivational Interviewing.
Participants were presented with information on how speech
data recorded during a psychotherapy session were processed
and analyzed using machine learning models to generate
feedback for psychotherapists regarding their adherence to MI
principles and possibilities for improvement, as shown in Figure
2.
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Figure 2. The output slide of the artificial intelligence (AI)–enabled feedback tool showing a visual summary of the AI-generated recommendations
regarding the adherence of motivational interviewing principles.

The AI-Enabled TR Tool
Timely psychotherapeutic support may lower the risk of
worsening depressive symptoms and suicidality [25]. Multiple
studies have demonstrated the effectiveness of AI-enabled
emotion analysis in assessing patients’ depressive states and
recommending timely intervention, thereby improving mental
health care [22,26]. In particular, systems have been developed
in recent years to monitor or evaluate the mood of individuals
with mental disorders, such as major depressive or bipolar
disorder, using speech data [27,28]. These tools usually require

patients to record voice samples on their mobile phones, which
are analyzed by an automated speech data classifier to assess
their current mood [27]. Mental health practitioners can then
use this information to decide whether urgent intervention is
needed [29]. The TR tool chosen for this study was based on
the system developed by SondeHealth [30]. Specifically,
participants were presented with information on how voice data
recorded on a mobile device are processed and analyzed to
generate a mood score that may be used for treatment-related
decisions, as shown in Figure 3.
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Figure 3. The output slide of the artificial intelligence (AI)–enabled treatment recommendation tool showing a visual summary of the AI-generated
mood scores for 2 patients.

Research Model and Hypotheses
The first goal of this study was to test the applicability of a
modified version of the UTAUT in the mental health context
to understand the factors that influence the intention to use 2
specific AI-enabled mental health care tools [11,17,31,32]. In
line with the UTAUT, we propose tool-specific perceived
usefulness (ie, the degree to which an individual believes that
using a system will enhance their performance) and perceived
ease of use (ie, the degree of ease associated with using the
technology) to predict the behavioral intention to use the tools
in their future work. The hypotheses for this research have been
preregistered through the Open Science Framework [33]. We
propose the following hypotheses:

• Hypothesis 1: There is a positive relationship between
perceived usefulness and the intention to use the tools in
psychotherapy.

• Hypothesis 2: There is a positive relationship between
perceived ease of use and the intention to use the tools in
psychotherapy.

Unlike experienced psychotherapists, psychology students and
psychotherapists in training may be less likely to be influenced
by established work habits or procedures, which could impede
the adoption of new AI technologies [11]. However, it has been
suggested that students are more likely to be affected by their
peers and the values and standards of their potential future
employers [34]. As a result, we propose that the UTAUT
variable, “social influence” (ie, the perception that other
significant people think the system should be used), should be
considered a predictor of students’ intention to use the tools.

• Hypothesis 3: There is a positive relationship between social
influence and the intention to use the tools in psychotherapy.

It has been suggested that trust may be a relevant predictor of
the intention to use a technology if the risk associated with it is
high [12]. Because of the sensitive nature of the
recommendations made by the 2 tools, we hypothesized that
trust may be a predictor of students’ intention to use the tools.

• Hypothesis 4: There is a positive relationship between trust
in the tools and the intention to use them in psychotherapy.

A lack of understanding of the underlying mechanisms of
AI-enabled tools in mental health care has led to skepticism
regarding their use [35,36]. In particular, the lack of
transparency and explainability of AI-based clinical
decision-making has impeded the adoption of such tools in
mental health care [35-37]. Building on the new framework for
theorizing and evaluating Nonadoption, Abandonment, and
Challenges to the Scale-Up, Spread, and Sustainability of Health
and Care Technologies [2], we proposed that knowledge
regarding technology is a predictor of its perceived value.
Consequently, we suggested that students with the knowledge
and skills to apply the tools and understand how the
recommendations are derived are more likely to perceive them
as useful [17,38]. To test this, we extended the UTAUT by
including cognitive technology readiness as an indicator of
general AI knowledge and understanding of the tool as an
indicator of specific AI knowledge as predictors of perceived
usefulness, perceived ease of use, and trust. We preregistered
2 research questions to test this relationship:

• Research question 1: Is the positive relationship between
cognitive technology readiness and the intention to use the
tools mediated through (1) perceived usefulness, (2)
perceived ease of use, and (3) trust in the tools?

• Research question 2: Is the positive relationship between
understanding of the tools and the intention to use the tools
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mediated through (1) perceived usefulness, (2) perceived
ease of use, and (3) trust in the tools?

Methods

Participants
Psychology students and psychotherapists in training were
recruited through social media postings, email correspondence
with administrative offices of universities, and psychotherapy
training centers, as well as through the professional
research-focused panel company, Prolific. Data were collected
between October 2022 and January 2023, resulting in a total of
362 participants beginning the questionnaire. Of these, 208
provided answers on the behavioral intention to use the tools,
resulting in a 42.54% dropout rate. In addition, 2 participants
failed at least 2 of the 4 attention check items [39], leaving us
with a final sample size of 206.

The final sample consisted of 16% (33/206) of men, 80.1%
(165/206) of women, and 3.9% (8/206) of nonbinary individuals.
The age of the participants ranged from 18 to 54 (mean 28.10,
SD 7.03) years. Data were collected from Germany, the United
States, the United Kingdom, and Canada. Most participants
studied in Germany (111/206, 53.9%), followed by the United
Kingdom (49/206, 23.8%), the United States (32/206, 15.5%),
Canada (13/206, 6.3%), and other countries (1/206, 0.5%).
Regarding the field of study, most participants stated that their
studies focused on clinical psychology (118/206, 57.3%),
followed by those studying psychology with no specific focus
(50/206, 24.3%) and those who did not provide this information
(38/206, 18.4%).

Procedure
The web-based survey was anonymous and self-administered.
All participants provided informed consent before participating.
In the web-based survey, we first assessed cognitive technology
readiness. Next, participants were presented with slides that
explained how recommendations for the AI-enabled FB tool
and TR tool were generated (the material is available from the
first author upon request). Before seeing the slides, participants
read the following short introduction: “On the following page,
you will be presented with a tool that is used to [FB tool: provide
feedback to psychotherapists about what went well and what
could be improved in their sessions; TR tool: generate a mood
score to rate the severity of patients’ depression. The mood
score may be used by psychotherapists to decide which patient
to treat first if multiple patients seek treatment and there is
limited capacity]. Please read the information carefully and try
to understand what the tool does and how it may be used in
psychotherapy practice/training. After the presentation, you will
be asked a couple of questions about the tool.” After each tool
presentation, the UTAUT predictor variables (ie, perceived
usefulness, perceived ease of use, social influence, and trust),
the understanding of the tool, and the intention to use the
respective tool were assessed. Finally, we asked them about
their demographic information.

Ethics Approval
The Institutional Review Board Committee of the University
of Regensburg approved the study protocol (22-3096-101).

Measurement Instruments

Independent Variables
We assessed cognitive technology readiness with 5 items of the
cognition factor of the medical AI readiness scale [40]. This
scale measures terminological knowledge about medical AI
applications. In total, 2 items with factor loadings<0.40 [41]
that did not relate to a general understanding of AI (ie, “I can
define the basic concepts of data science” and “I can define the
basic concepts of statistics”) were removed. We retained 3 items
related to AI understanding (ie, “I can explain how AI systems
are trained,” “I can define the basic concepts and terminology
of AI,” and “I can properly analyze the data obtained by AI in
healthcare”; α=.77; ω=0.75).

Perceived usefulness, perceived ease of use, and social influence
were measured using items adapted from the study by Venkatesh
et al [32]. Participants rated their agreement on a 5-point Likert
scale ranging from 1=strongly disagree to 5=strongly agree.
Perceived usefulness was assessed using 5 items (eg, “Using
the AI tool would enable me to accomplish tasks more quickly”).
The reliabilities are αFB tool=.86 and ωFB tool=0.91 for the first
tool and αTR tool=.91 and ωTR tool=0.93 for the second tool.
Perceived ease of use was measured using 4 items (eg, “My
interaction with the AI tool will be clear and understandable”;
αFB tool=.84; ωFB tool=0.89; αTR tool=.89; ωTR tool=0.93). Social
influence was measured with 5 items (eg, “In my future job as
a psychotherapist, people who are important to me will think
that I should use the AI tool”; αFB tool=.88; ωFB tool=0.94; αTR

tool=.91; ωTR tool=0.95). Trust was measured with 3 items adapted
from the study by Venkatesh et al [42] (eg, “The AI tool will
provide access to sincere and genuine feedback”; αFB tool=.83;
ωFB tool=0.84; αTR tool=.89; ωTR tool=0.89). Finally, understanding
of the AI-enabled tools was assessed with a single item (“Please
rate your understanding of the AI-enabled feedback tool”), with
answers ranging from 1=I don’t understand the tool at all to
6=I understand the tool extremely well.

The Behavioral Intention to Use the Tools as the
Dependent Variable
The behavioral intention to use the tools was measured on a
5-point Likert scale, ranging from 1=strongly disagree to
5=strongly agree, with 3 items adapted from the study by
Venkatesh et al [32] (eg, “I intend to use the AI tool in my future
job as a psychotherapist”; αFB tool=.95; ωFB tool=0.95; αTR

tool=.96; ωTR tool=0.96).

Control Variables
Data privacy concerns and AI anxiety (ie, fears and insecurity
regarding AI technology) have repeatedly been identified as
negative predictors of the intention to use AI technology [43].
In addition, it has been shown that male participants have more
positive attitudes toward AI technologies than female
participants [44]. Finally, some evidence exists for the
association of AI acceptance with age [45] and country [46].
Accordingly, data privacy and security concerns [47] (αFB

tool=.84; ωFB tool=0.85; αTR tool=.89; ωTR tool=0.91; eg, “I would
be concerned that the AI tool would share my personal
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information with third-parties”), AI anxiety [32] (αFB tool=.78;
ωFB tool=0.81; αTR tool=.76; ωTR tool=0.79; eg, “I feel apprehensive
about using the AI tool”), gender (0=man and 1=woman and
nonbinary), age, and study country (1=Germany and
0=English-speaking countries) were included as control
variables. One item of the AI anxiety scale and 3 items of the
data privacy scales with standardized factor loadings<0.40 were
excluded [41].

Data Analysis
Data were analyzed using R software (version 4.2.2; R
Foundation for Statistical Computing) [48]. First, we calculated
descriptive statistics, including mean values, SDs, and
correlations between study variables for each tool. Second, a
confirmatory factor analysis of perceived usefulness, perceived
ease of use, social influence, trust, cognitive readiness, specific
tool understanding, behavioral intention to use the tool, AI
anxiety, and data privacy concerns was conducted using the
lavaan package [49]. We assumed at least reasonable fit for
models with comparative fit index (CFI) and Tucker-Lewis
index (TLI) values close to or exceeding 0.90 [50]. Root mean
square error of approximation (RMSEA) values <0.08 are
considered acceptable [51]. Finally, standardized root mean
square residual (SRMR) values up to 0.08 are considered
satisfactory [50]. We compared the theoretical measurement
model with 3 more parsimonious models (combining cognitive
readiness and tool understanding; perceived usefulness and ease
of use; and AI anxiety and data privacy concerns) to assess
whether the model variables were sufficiently distinct. Third,
we conducted structural equation modeling (SEM) using the
lavaan package [49] to examine the relationships between the
predictor variables and the intention to use the tools to answer
hypotheses 1 to 4 and research questions 1 and 2. We specified
2 models (1 for each tool) with direct effects and the mediation
of the relationship between specific tool understanding,
cognitive AI readiness, and the intention to use the tool. We
followed the recommendations by Scharf et al [52] to determine
whether the regression coefficients should be regularized.
Specifically, we applied regularization in case of
multicollinearity and associated inflated SEs [52]. The study
data and R script will be made available on the web on
publication [33].

Preregistration Statement
The hypotheses were preregistered in the Open Science
Framework [33]. Exploratory hypotheses were thus identified.

Results

Table 1 presents the means, SDs, and correlations. We specified
the theoretical model with perceived usefulness, perceived ease
of use, social influence, trust, cognitive readiness, specific tool
understanding, behavioral intention to use the tool, AI anxiety,

and data privacy concerns to load on separate factors. The
theoretical model fitted the data adequately (FB tool:

χ2
370=808.9, P<.001; CFI=0.89; TLI=0.87; RMSEA=0.08;

SRMR=0.08 and TR tool: χ2
370=713.41, P<.001; CFI=0.93;

TLI=0.92; RMSEA=0.07; SRMR=0.06).

The theoretical model fit the data better than the 3 more
parsimonious models (ie, cognitive readiness and specific tool

understanding combined; FB tool:   χ2
7=50.37, P<.001 and TR

tool:   χ2
7=72.68, P<.001; perceived usefulness and perceived

ease of use combined, FB tool:   χ2
8=257.79, P<.001 and TR

tool:   χ2
1=435.43, P<.001; and AI anxiety and data privacy

concerns combined, FB tool:   χ2
8=240.91, P<.001 and TR tool:

  χ2
1=133.6, P<.001). Thus, we concluded that the model

variables were sufficiently distinct.

To test hypotheses 1 to 4 and research questions 1 and 2, we
specified 2 SEMs (1 for each tool) with the behavioral intention
to use FB tool and TR tool to be predicted by the respective
UTAUT variables (ie, perceived usefulness, perceived ease of
use, social influence, and trust); tool understanding; cognitive
readiness; and the control variables AI anxiety, data privacy
concerns, age, male gender (0=man and 1=woman and
nonbinary), and study country (1=Germany and
0=English-speaking countries). In addition, we added mediated
pathways of the relationship of specific tool understanding and
cognitive AI readiness with the intention to use the tools through
perceived usefulness, perceived ease of use, and trust in the
tool. No inflated SEs were observed, and we proceeded with
the interpretation of the SEM without regularization. The results
are presented in Tables 2 and 3. Figure 4 shows the significant
paths from the SEM path models. As can be seen in Tables 2
and 3 and Figure 4, the relevant paths differ between the 2
models. Perceived usefulness and social influence showed the
expected positive relationships with the intention to use both
tools, supporting hypotheses 1 and 3. However, trust was
unrelated to use intention in both models, and perceived ease
of use was unrelated to the intention to use the FB tool and was
negatively related to the intention to use the TR tool.
Accordingly, we found no support for hypotheses 2 and 4. AI
anxiety was negatively related to use intentions in both models.
Finally, the exploratory mediation analysis results suggest that
the relationships of tool understanding and cognitive technology
readiness with the intention to use FB tool are not mediated
through perceived usefulness, perceived ease of use, or trust.
There was a negative mediation effect of the relationship
between tool understanding and the intention to use the TR tool
through perceived ease of use, that is, tool understanding was
positively related to perceived ease of use, which, in turn, was
negatively associated with use intention.
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Table 1. Means, SDs, and correlations among study variablesa.

121110987654321

—−0.120.050.08−0.20−0.050.730.150.770.740.35—c1. PUb

—0.01−0.100.05−0.37−0.260.230.540.380.26—0.442. PEd

—−0.250.120.13−0.25−0.020.780.190.71—0.400.593. SIe

—−0.220.040.08−0.31−0.170.720.19—0.570.500.684. TRf

—−0.08−0.130.21−0.19−0.210.15—0.14−0.010.430.105. TUg

—−0.230.110.11−0.41−0.11—0.080.660.670.490.706. IUh

—−0.030.19−0.110.33—−0.18−0.10−0.24−0.06−0.17−0.077. PCi

—0.16−0.11−0.12—0.31−0.32−0.22−0.21−0.11−0.31−0.088. ANXj

—−0.070.01—−0.19−0.110.220.210.090.140.150.079. CRk

—−0.11—0.01−0.030.110.02−0.21−0.060.12−0.030.0110. Age

——−0.11−0.070.11−0.02−0.120.00−0.11−0.15−0.01−0.0811. Genderl

—0.21−0.22−0.02−0.10−0.02−0.03−0.020.01−0.13−0.06−0.1012. Countrym

0.5 (0.5)0.8 (0.4)28.1
(7.0)

2.5 (1.0)2.7 (0.9)4.2 (1.6)2.9 (1.1)4.2 (1.0)3.4 (0.9)2.9 (0.9)3.7 (0.8)3.2 (0.9)FB tooln, mean (SD)

5 (0.5)0.8 (0.4)28.1
(7.0)

2.5 (1.0)2.9 (1.0)4.0 (1.7)2.4 (1.2)4.5 (1.1)3.0 (1.0)2.7 (1.0)3.9 (0.8)2.8 (1.1)TR toolo, mean (SD)

aThe lower triangle of the correlation table contains the correlations for the FBtool, and the upper triangle contains the correlations for the TR tool. All
correlations≥|0.14| are significant at P<.05.
bPU: perceived usefulness.
cNot applicable.
dPE: perceived ease of use.
eSI: social influence.
fTR: trust in the tool.
gTU: tool understanding.
hIU: intention to use the tool.
iPC: privacy concerns.
jANX: artificial intelligence anxiety.
kCR: cognitive technology readiness.
lCode: 0=man and 1=woman and nonbinary.
mCode: 1=Germany and 0=English-speaking country.
nFB tool: feedback tool.
oTR tool: treatment recommendation tool.
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Table 2. Structural equation modeling results predicting the intention to use the feedback tool (n=206).

Feedback toolEffect

P valueβ (95% CI)B (SE)

Direct effects (DVa=IUb)

<.001.51 (.30 to .72)0.63 (0.11)PUc

.59.03 (−.09 to .15)0.06 (0.06)PEd

<.001.32 (.19 to .46)0.37 (0.07)SIe

.72.04 (−.19 to .27)0.06 (0.12)TRf

.02.12 (.02 to .22)0.12 (0.05)CRg

.16−.07 (−.18 to .03)−0.07 (0.05)TUh

.42−.04 (−.13 to .06)−0.03 (0.05)PCi

.001−.18 (−.29 to −.07)−0.18 (0.06)ANXj

.74−.01 (−.10 to .07)0.00 (0.04)Age

.48−.03 (−.12 to .05)−0.08 (0.04)Genderk

.66.02 (−.07 to .11)0.04 (0.04)Countryl

Direct effects (DVs=PU, PE, and TR)

.13.12 (−.03 to .27)0.09 (0.08)TU→PU

.60.04 (−.12 to .20)0.04 (0.08)CR→PU

<.001.45 (.32 to .57)0.24 (0.06)TU→PE

.62.04 (−.11 to .18)0.02 (0.07)CR→PE

.09.13 (−.02 to .28)0.09 (0.08)TU→TR

.22.10 (−.06 to .26)0.07 (0.08)CR→TR

Indirect effects

.16.06 (−.02 to .14)0.06 (0.04)TU→PU→IU

.59.01 (−.04 to .07)0.01 (0.03)TU→PE→IU

.73.01 (−.02 to .04)0.01 (0.02)TU→TR→IU

.60.02 (−.06 to .10)0.02 (0.04)CR→PU→IU

.71.00 (−.01 to .01)0.00 (0.00)CR→PE→IU

.73.00 (−.02 to .03)0.00 (0.01)CR→TR→IU

aDV: dependent variable.
bIU: intention to use the tool.
cPU: perceived usefulness.
dPE: perceived ease of use.
eSI: social influence.
fTR: trust in the tool.
gCR: cognitive technology readiness.
hTU: tool understanding.
iPC: privacy concerns.
jANX: artificial intelligence anxiety.
kCode: 0=man and 1=woman and nonbinary.
lCode: 1=Germany and 0=English-speaking country.
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Table 3. Structural equation modeling results predicting the intention to use the treatment recommendation tool.

Treatment recommendation toolEffect

P valueβ (95% CI)B (SE)

Direct effects (DVa=IUb)

.01.28 (.06 to .50)0.31 (0.11)PUc

.004−.18 (−.30 to −.06)−0.29 (0.06)PEd

<.001.50 (.34 to .65)0.56 (0.08)SIe

.12.17 (−.04 to .37)0.23 (0.11)TRf

.91.00 (−.09 to .08)−0.01 (0.04)CRg

.65.02 (−.07 to .12)0.02 (0.05)TUh

.81−.01 (−.10 to .08)−0.01 (0.05)PCi

<.001−.21 (−.33 to −.10)−0.25 (0.06)ANXj

.64−.02 (−.10 to .06)0.00 (0.04)Age

.74−.01 (−.09 to .07)−0.04 (0.04)Genderk

.40−.03 (−.11 to .04)−0.08 (0.04)Countryl

Direct effects (DVs=PU, PE, and TR)

.04.15 (.01 to .29)0.15 (0.07)TU→PU

.64.04 (−.12 to .19)0.04 (0.08)CR→PU

<.001.57 (.47 to .68)0.40 (0.05)TU→PE

.30−.07 (−.20 to .06)−0.06 (0.07)CR→PE

.01.19 (.04 to .33)0.15 (0.07)TU→TR

.44.06 (−.10 to .22)0.06 (0.08)CR→TR

Indirect effects

.12.04 (−.01 to .09)0.05 (0.03)TU→PU→IU

.01−.10 (−.18 to −.03)−0.11 (0.04)TU→PE→IU

.19.03 (−.01 to .08)0.03 (0.02)TU→TR→IU

.64.01 (−.03 to .05)0.01 (0.02)CR→PU→IU

.34.01 (−.01 to .04)0.02 (0.01)CR→PE→IU

.49.01 (−.02 to .04)0.01 (0.01)CR→TR→IU

aDV: dependent variable.
bIU: intention to use the tool.
cPU: perceived usefulness.
dPE: perceived ease of use.
eSI: social influence.
fTR: trust in the tool.
gCR: cognitive technology readiness.
hTU: tool understanding.
iPC: privacy concerns.
jANX: artificial intelligence anxiety.
kCode: 0=man and 1=woman and nonbinary.
lCode: 1=Germany and 0=English-speaking country.
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Figure 4. The results of exploratory mediation analysis. Significant paths for the prediction of the intention to use the artificial intelligence (AI)–enabled
(A) feedback tool and (B) treatment recommendation tool. Only nonzero paths and indirect effects are displayed.

Discussion

Principal Findings
In recent years, there has been a rapid growth in the development
of AI-enabled mental health care tools. To investigate the
implementation challenges and potential user needs, in this
study, we examined the intention to use 2 AI-enabled mental
health care tools among psychology students and
psychotherapists in training. The first tool provides feedback
to the psychotherapist on their adherence to MI techniques by
analyzing data collected during psychotherapy sessions. The
second tool uses patient voice samples to derive mood scores
that the therapists may use for treatment decisions. An extended
UTAUT model was used to analyze the results, which showed
that perceived usefulness and social influence had a positive
effect on the intention to use both tools. However, trust was
unrelated to the intention to use both tools, and perceived ease
of use was unrelated (FB tool) and even negatively related (TR
tool) to the intention to use when considering all predictors in
1 model.

The findings of this study are partly in line with previous
research on AI-CDSSs in medicine [13,15]. Fan et al [13] found
positive associations between perceived usefulness and trust
with use intentions among a sample of health care professionals,
and Zhai et al [15] reported positive relationships between
perceived usefulness and social influence with the intention to
use AI-assisted contouring technology among radiation
oncologists. Furthermore, Tran et al [16] identified social
influence as the only significant predictor of the intention to
use AI-CDSSs among undergraduate medical students. Gado
et al [17] found support for the direct effects of perceived
usefulness, AI knowledge, and perceived social norms on the
intention to use AI as well as indirect effects of perceived ease
of use on use intention via positive attitudes toward AI in a
sample of psychology students. This consistent link between
social influence and AI use intentions found in studies using
student samples may be explained by the greater susceptibility

of students to influence of peers and prospective employers
[53]. As students have yet to develop a professional identity
that shapes their work-related decisions, they may be more
likely to align their decisions with the perceived expectations
of influential others [54].

The assessment of symptom severity often involves complex
interactions with the patient and reflections on psychotherapeutic
elements, which may make participants skeptical of a device
that is perceived as being easy to use. One explanation for the
null and negative relationships between perceived ease of use
and use intentions for AI-generated recommendations in the
mental health field may be the high stakes of accepting the tool’s
advice. This interpretation might be supported by a study
predicting intentions to learn about AI applications among
medical staff [55], which found that perceived ease of use was
the strongest predictor of the intention to learn how to use
AI-enabled tools in health care. Combined with the results of
this study, it may be assumed that ease of use positively predicts
interactions with AI-generated advice that aligns with the user’s
level of competency and professionalism. That is, ease of use
may positively predict learning intentions but maybe not the
intention to use high-stakes mental health tools among students
and trainees who have not yet gained profound professional
experience. Students’ primary task at university is to learn and
acquire skills and knowledge. The ease with which an
AI-enabled tool can be applied likely becomes more relevant
when the interaction with such tools is required or advantageous
for their professional performance. More research is needed to
understand the conditions under which perceived ease of use is
positively related to AI use intentions among medical and mental
health practitioners and to explore the implications of the high
stakes associated with AI-generated recommendations.

Trust in the tools was unrelated, whereas AI anxiety was
negatively related to the intention to use both the FB and TR
tools. One explanation for this finding may be participants’
limited insight into the functioning mechanisms of the tools. A
profound assessment of their trust in the tools requires more
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in-depth knowledge than assessing their AI anxiety. Specifically,
whether the AI tool “will provide data in [their] best interest,”
“provides access to sincere and genuine feedback,” or “will
perform its role of a supportive system very well” [42] may be
difficult to assess without having used the tool in practice and,
thus, may be less relevant for students’ intention to use the tool.
In contrast, AI anxiety represents intuitive, affective reactions,
such as feeling apprehensive about the tool or being hesitant to
use the tool for fear of making mistakes [32]. As students and
psychotherapists in training have limited to no experience
interacting with AI-generated feedback, they may base their
decision-making on intuitive, emotional reactions better
represented by AI anxiety than trust in the tools [56].

By differentiating between specific tool understanding and more
general cognitive technology readiness, this study moves beyond
previous research that focused on the role of general AI
knowledge in predicting general use intention [17]. The
mediation analyses revealed that none of the 3 UTAUT variables
mediated the relationship between tool understanding and
cognitive technology readiness with the intention to use the FB
tool. However, there was a positive relationship between
cognitive technology readiness and the intention to use the FB
tool. This might indicate that general AI understanding may
spur use intentions of low-stakes AI-generated advice but not
the intention to use AI advice for deriving treatment decisions.
In addition, in line with the direct effects, perceived ease of use
emerged as a negative mediator between specific tool
understanding and the intention to use the TR tool. The results
of the exploratory mediation models highlighted the relevance
of distinguishing between different AI-enabled tools when
assessing the relationship between different forms of AI
knowledge and use intentions.

Limitations and Future Directions
This study has some limitations. First, we collected data at only
1 time point. Although cross-sectional designs are commonly
chosen to investigate mechanisms predicted by the UTAUT
[13,15], they prevent the assessment of an order of effects. The

adoption of AI-generated advice should be studied longitudinally
to increase the understanding of use-predicting mechanisms.
Second, although studying technology acceptance with
deterministic models, such as the UTAUT and TAM, has a long
tradition, such studies have recently been criticized for their
oversimplicity, which lowers their explanatory power. In this
vein, focusing on 2 specific AI-enabled mental health tools may
be highlighted as a strength of this study, as it increases the
ecological validity of the results. However, future research
should seek to integrate organizational and system processes to
provide a more profound understanding of the mechanisms that
prevent and promote technology adoption. Other frameworks
and theories, such as activity theory [57], adaptive structuration
theory [58], and the Nonadoption, Abandonment, and
Challenges to the Scale-Up, Spread, and Sustainability of Health
and Care Technologies framework [2], may serve as theoretical
underpinnings of research investigating use in context instead
of focusing on individual-centered variables alone [5]. Finally,
we focused on psychology students and psychotherapists in
training as a potential user group and found discrepancies in
our results compared with previous research findings [13,16].
Future research should compare adoption and adoption
intentions among multiple (potential) user groups and tools to
shed light on tool-dependent and user-dependent predicting
mechanisms.

Conclusions
This study provides insights into the individual implementation
challenges of AI-enabled FB and TR tools used in mental health
care. The results highlight the relevance of specific UTAUT
predictors as general drivers of AI technology adoption in mental
health care (ie, perceived usefulness, social influence, and AI
anxiety) and emphasize the need to distinguish between different
AI technologies with reference to other influencing factors (ie,
perceived ease of use, cognitive technology readiness, and tool
understanding). Future research should explore the conditions
under which perceived ease of use is positively related to AI
use intentions among mental health practitioners.
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