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Abstract

Background: The escalating demands of modern health care systems, combined with the emotional toll of patient care, have
led to an alarming increase in physician burnout rates. This burnout, characterized by emotional exhaustion, depersonalization,
and reduced personal accomplishment, can hinder doctors’ ability to connect with patients effectively. Moreover, the cognitive
load arising from information overload and the need for multitasking can further hinder doctors’ ability to connect with patients
effectively. Understanding the complex relationship between physician burnout and cognitive load is crucial for devising targeted
interventions that enhance physician well-being and promote effective physician-patient interactions. Implementing strategies to
alleviate burnout and cognitive load can lead to improved health care experiences and patient outcomes.

Objective: Our study explores the interplay between physician burnout and its potential impact on interpersonal communication,
particularly focusing on the role of cognitive load using a pilot study in a nonclinical setting involving nonclinical participants.

Methods: This study uses an experimental design to evaluate 3 feedback tools (haptic, visual, and postvisit summary) and
measure the cognitive load they impose on nonclinical participants in a nonclinical environment. The NASA Task Load Index,
a widely accepted measure of cognitive load, was used to quantify the cognitive load associated with the feedback tools. The
study used a within-subject design, meaning participants experienced all 3 feedback methods. A sample of 18 nonclinical
participants was selected using counterbalancing techniques.

Results: Postsession feedback not only enhancing performance but also mitigating the influence of cognitive load as compared
with real-time feedback (haptic+visual). Participants with interview experience showed lower cognitive load levels when exposed
to real-time feedback as compared with novice users. In contrast, postsession feedback was more effective for novice users. In
addition, cognitive workload emerged as a moderating factor in the relationship between feedback tools and their impact on
performance, particularly in terms of speaking balance and pace. This moderating effect suggests that the correlation between
feedback tool efficacy and performance varies based on an individual’s cognitive load while using the feedback tool. The
comparison of postfeedback with haptic feedback yielded a Z score of −3.245 and a P value of .001, while the comparison with
visual feedback resulted in a Z score of −2.940 and a P value of .003. These outcomes underscore a significant disparity in the
means between postsession feedback and real-time feedback (haptic+visual), with postsession feedback indicating the lowest
mean score.

Conclusions: Through the examination of various feedback tools, this study yields significant and insightful comparisons
regarding their usability and appropriateness in nonclinical settings. To enhance the applicability of these findings to clinical
environments, further research encompassing diverse participant cohorts and clinical scenarios is warranted.

(JMIR Hum Factors 2023;10:e49675) doi: 10.2196/49675
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Introduction

Overview
Effective communication lies at the heart of positive
physician-patient interactions, playing a crucial role in achieving
improved health outcomes. Poor communication has been linked
to detrimental effects on patient well-being, highlighting the
significance of addressing this issue in health care [1]. A study
conducted by the University of Kansas School of Medicine
revealed that patients’ reports of their understanding of the
postdischarge information and instructions they received were
significantly lower than what their doctors perceived,
underscoring the need for enhanced communication strategies
[1].

A factor impacting physician-patient interactions is the rising
rate of physician burnout [2]. The demands of modern health
care systems, coupled with the emotional toll of patient care,
have led to an alarming prevalence of burnout among physicians,
affecting 54% of them [2,3]. Overall, 66% of physicians have
high levels of emotional exhaustion, 33% encounter increased
levels of depersonalization, and 39% experience decreased
personal accomplishment [4]. As physicians experience
emotional exhaustion, depersonalization, and a reduced sense
of personal accomplishment, their ability to effectively engage
with patients may be compromised. Furthermore, cognitive load
arising from information overload and the need for multitasking
can further impede physicians’ capacity to process and respond
to patient cues, leading to diminished empathetic communication
[4]. Understanding the intricate relationship between physician
burnout and cognitive load is pivotal in developing targeted
interventions to improve physician well-being and foster
meaningful and effective physician-patient interactions.
Implementing strategies to alleviate burnout and mitigate
cognitive load can pave the way for improved health care
experiences and patient outcomes [5]. In this context, feedback
is a valuable tool for enhancing physician-patient interactions
[6].

At present, physicians receive summative feedback in the form
of patient-reported experience measures (PREMs). PREMs are
a type of health care assessment tool used to collect information
about patients’ experiences with the health care services they
receive [7]. Unlike patient-reported outcome measures, which
focus on the health outcomes and symptoms experienced by
patients, PREMs specifically capture patients’ perspectives on
the quality of care, communication, interactions with health
care providers, and the overall health care environment [8].

PREMs are typically collected through surveys or questionnaires
completed by patients after receiving health care services [8].
These surveys ask patients about various aspects of their
experience, such as the ease of scheduling appointments, clarity
of information provided, attitude of health care professionals,
waiting times, and overall satisfaction with the care received.
However, the implementation of PREMs in regular care visits
and decisions presents major challenges owing to their

time-consuming nature, varying patient interpretations, and the
complexity of data collection and analysis [9]. Different patients
may have varying expectations and interpretations of their
experiences, which makes it challenging to obtain standardized
and objective measurements. Because PREMs do not provide
real-time feedback, they are often not well understood by
clinicians, leading to confusion about how to best use PREMs
to improve patient care. Patients from different cultural
backgrounds and language proficiency levels may interpret
questions differently or find it difficult to accurately express
their experiences. As a result, concerns about the validity and
reliability of surveys, difficulties surrounding interpretation,
issues of context, and anxiety surrounding negative feedback
have resulted in doctors’ skepticism toward patient surveys as
a quality enhancement tool. On exploring the ambiguities in
doctors’ attitudes toward patient experience surveys, it was
discovered that most physicians undermine the potential for
survey-based quality improvement; however, they still find
value in receiving patient feedback [9]. This raises the question
of whether real-time feedback might serve as a better quality
enhancement tool to replace summative feedback received
through PREMs.

In light of these pressing issues, this research aims to investigate
the interplay between physician burnout and its potential impact
on interpersonal communication, particularly focusing on the
role of cognitive load, using a pilot study in a nonclinical setting
involving nonclinical participants. The pilot study focused on
testing the usability and effectiveness of 3 feedback tools (haptic
feedback, visual feedback, and postvisit summary) designed to
mitigate physician burnout and enhance communication skills.
Simultaneously, we measured the cognitive load associated with
each feedback modality to assess its potential impact on the
effectiveness of communication.

Our methodological adaptations were motivated by several
factors. The development and evaluation of a feedback system
within clinical settings can be resource intensive in terms of
time and expense. Therefore, we attempted to test these feedback
modalities in nonclinical settings as a more feasible approach
before implementing them in clinical environments. The primary
rationale for using nonclinical participants in our experimental
study design was the remote nature of the study, which
facilitated recruitment from a broader pool. Although our
preference was to include primary care physicians as
participants, their limited availability poses challenges in
recruiting this specific population. Consequently, conducting
testing in nonclinical settings allows us to mitigate costs related
to uncovering potential flaws by engaging users willing to invest
time and effort in finding imperfections in the feedback
modalities tested.

In conclusion, this research holds immense promise in
addressing the pressing concerns of physician-patient
communication and clinician burnout. By identifying effective
feedback tools and understanding their impact on cognitive load
and communication, our study aims to enhance physician-patient
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interactions and foster a supportive environment. Through
targeted interventions, we envision improved health care
experiences and better patient outcomes, ultimately benefiting
both the patients and health care providers.

Research Background
This study is part of an extensive research study that uses
human-centered design methodologies to develop and assess
the effectiveness of feedback modalities aimed at enhancing
physician-patient communication in primary care settings [6].
The primary goal of this system is to facilitate improved
interactions between physicians and patients without imposing
additional cognitive load on physicians.

Prior investigations have explored conventional feedback
approaches and novel feedback methods for physicians [6].
However, only a limited number of studies have evaluated the
effectiveness of these feedback tools compared with the
cognitive load caused by these modalities.

According to a scenario-based design session conducted in a
previous study [6], several factors have been identified as crucial
considerations when devising a feedback system: (1) it should
not distract physicians during patient interactions, (2) the
feedback provided should be easily understandable and
implementable, (3) real-time feedback is deemed more effective,
(4) the feedback should not add to the cognitive load or
contribute to burnout among physicians, and (5) it should foster
a balanced conversation between physicians and patients by
reducing interruptions and instances where physicians talk more
than the patient [10]. On the basis of these essential
considerations, three distinct concepts emerged from the
scenario-based design process: (1) haptic or tactile feedback,
(2) visual feedback using visual cues, and (3) postvisit feedback
in the form of a written summary.

Methods

Study Design
A within-subjects design methodology was used to evaluate the
feedback tools used in this study. The session lasted for 60
minutes and was conducted via Zoom (Zoom Video
Communications Inc). A concise outline of the study design is
shown in Figure 1.

During usability testing, participants assumed the role of an
interviewer, whereas the researcher undertook the persona of
an interview candidate. A standardized interview script was
provided to all participants to facilitate guided communication;
however, participants were encouraged to improvise when
deemed appropriate. After the session, the participants were
asked follow-up questions. A total of 3 successive rounds of
interviews were conducted wherein each interview round
featured the use of a different feedback tool.

As burnout rate is one of the main factors influencing
physician-patient interaction, the cognitive load associated with
using the feedback tool was measured using the NASA Task
Load Index (NASA TLX). The NASA TLX assesses workload
on a 7-point scale, categorized into 5 levels: low (0-9), medium
(10-29), somewhat high (30-49), high (50-79), and very high
(80-100). It uses 6 dimensions to assess mental demands,
physical demands, temporal demands, performance, effort, and
frustration. Increments in high, medium, and low estimates for
each point resulted in 21 gradations on the scales.

The NASA TLX is a cognitive workload assessment tool that
allows users to perform subjective workload assessments of
individuals working with various systems or interfaces [11].
After testing each feedback tool, participants were assessed
using a digital version of the NASA TLX. Notably, none of the
participants expressed objections or encountered difficulties
while completing the questionnaire.

Figure 1. Study design indicating the participant flow through the study activities.

Statistics and Data Analysis
In this study, the data analysis process included the application
of specific statistical tests to assess the suitability and reliability
of the scales used for factor analysis. The Kaiser-Meyer-Olkin
(KMO) test and Bartlett sphericity test were used to determine
the appropriateness of the scale for factor analysis. The KMO

test assesses sampling adequacy by measuring the proportion
of variance that can be attributed to underlying factors. A KMO
value above 0.6 indicates suitability for factor analysis, whereas
a value above 0.8 suggests high suitability. Similarly, the Bartlett
sphericity test evaluates the hypothesis that the intercorrelations
among the variables are all equal to 0. A significant result from
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this test indicated that the variables were correlated, supporting
the appropriateness of the factor analysis.

In addition, to measure the scale’s reliability, Cronbach α
coefficient was calculated, which is widely considered the
optimal method for evaluating internal consistency. A Cronbach
α score above .8 indicates excellent internal consistency,
whereas scores between .5 and .8 imply good consistency. By
conducting these statistical tests, we ensured the robustness of
our data and reliability of the scale, enhancing the validity and
rigor of our study’s findings.

Hypothesis
Cognitive workload moderates the relationship between the
usability of the feedback tools and its impact on
physician-patient interaction such that their association will
become weaker or stronger, depending on how high or low a
physician’s cognitive load rating is while using the feedback
tool. This is because cognitive workload plays a critical role in
influencing an individual’s capacity to receive, process, and
implement feedback effectively. Given that physicians are
required to assimilate and apply feedback while simultaneously
engaging in patient interactions, a lower cognitive load induced
by the feedback tool is positively associated with improved
usability and effectiveness of the feedback tool in enhancing
physician-patient interaction.

Ethics Approval
The research protocol adhered to the ethical standards set forth
by DePaul University’s institutional review board (research
protocol #IRB-2022-547), ensuring compliance with the
established guidelines.

Study Sample Size
Using a counterbalancing approach, a participant cohort
comprising 18 individuals (n=18) was selected using the
Communication & Digital Media Participant Pool. All
conceivable orders were used to prevent biases and control the
effects of cognitive load and other variables on the study
findings.

All participants underwent a screening process, resulting in the
inclusion of 18 students who met the specific criteria and were
subsequently invited to participate in the study. Participants
from various academic disciplines, including human-centered
design, accounting, computer science, and communication
programs, were invited to participate. The participant pool was
assembled from a diverse population and encompassed
individuals with varied backgrounds and experiences. The
median age of the participants was 26 (range 19-30) years.
Although most participants possessed experience in interviewee
roles, only 5 participants had prior experience conducting
interviews. All participants, except for 3, were unfamiliar with
real-time feedback tools.

Assigning Participants to Groups
A within-subjects design, alternatively referred to as a
repeated-measures design, was used, wherein each participant

sequentially evaluated the 3 feedback tools, and their
performance with each feedback tool was assessed. To eliminate
bias, a completely randomized design was used, wherein each
participant was selected at random to participate in the usability
test.

Study Activities

Haptic Feedback
In the initial interview round, the primary objective was to gain
comprehensive insights into the interviewees’background while
engaging in discussions about their job roles and responsibilities.
To foster interactivity, participants role-playing as interviewers
were actively encouraged to inquire about the interviewee’s
qualifications, experience, and suitability for their position.

Given the remote nature of the study, haptic cues were
systematically generated through the use of the participants’
mobile phones or smartwatches. The settings with touchscreen
and smartwatch devices were customized to emit tactile
sensations that corresponded to the distinct communication
behaviors under examination. The process involved mapping
specific communication parameters, such as pauses, active
listening moments, increased pace, and the lack of articulation
to the corresponding haptic sensations. For instance, a steady
but prolonged vibration might signify the need for a pause and
was used to indicate the need to practice speaking balance
through active listening and pausing to ask the interviewee
questions. In contrast, a brief series of rapid pulses can indicate
instances of interruption. As a result, it was used to alert
participants to slow down their pace and articulate better while
interacting with the interviewee.

Previous studies have provided an understanding of human
perceptual capabilities in the field of vibrotactile displays [12].
Pasquesi and Gorlewicz [12] delineated 3 specific frequency
ranges that produce distinct perceptual effects through vibration.
A frequency range below 3 Hz corresponds to a slow kinesthetic
motion evoking a gradual pulsation; the 10-70 Hz range creates
a fluttering sensation similar to a tapping or rapid pulse; and
finally, a 100-300 Hz frequency engenders a seamless vibration
similar to a steady buzz [12]. To simplify the learning curve
associated with haptic feedback, only 2 haptics were used in
this study. A rapid pulse of 10-70 Hz, also known as the
“heartbeat” vibration, was used to get the participants to
demonstrate improved pace and articulation, while the steady
buzz, also known as the “quick” vibration of 100-300 Hz, was
used to encourage participants to display improved speaking
balance by pausing and asking the interviewee questions.

The interpretation of physiological data related to speech metrics
is rooted in our aim to comprehensively assess the impact of
haptic cues on communication dynamics and cognitive load
[13]. By scrutinizing objective speech parameters, such as
speech rate, pauses, and speaking balance, we sought to
objectively quantify the efficacy of haptic feedback in
influencing communication behaviors. A visual representation
of the haptic feedback is shown in Figure 2.
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Figure 2. Visual representation of haptic feedback as transmitted via smartphone and smartwatch.

Visual Feedback
During the second round of the interview phase, participants
assumed the role of an interviewer and were tasked with
conveying details regarding the company’s background, client
base, and service offerings to the interviewees. During this
session, participants received real-time dynamic feedback using
visual cues. Throughout this interaction, visual cues in the form

of color-coded instructions were used to provide feedback on
pace, articulation, and speaking balance. Specifically, the use
of stoplight colors (red, yellow, and green) was implemented
to facilitate easy recognition and recall. Red signified the need
to pause and ask questions, yellow indicated the need to reduce
pace, and green connoted excellent pace and articulation. A
visual representation of the visual feedback is shown in Figure
3.

Figure 3. Visual representation of the visual feedback. UX: user experience.
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Postsession Feedback
In the concluding segment of the interview, participants
role-played as an interviewer and were tasked with briefing the
interviewee with final instructions and employment
prerequisites. During this interview phase, the participants did
not receive any feedback during the conversation. They were
expected to improvise based on their previous learning. At the
end of the session, the participants were provided with

postsession feedback articulated in the format of a written
synopsis. This feedback consisted of an overall evaluation of
their performance, illustrated through a rating mechanism
coupled with a detailed summary outlining their overall
proficiency in interpersonal communication, notably
encompassing parameters of pace, articulation, and speaking
balance. A visual representation of the postsession feedback is
shown in Figure 4.

Figure 4. Visual representation of the postsession feedback.

Results

Statistical Analysis

Factor Analysis
Table 1 presents the KMO and Bartlett sphericity tests. The
KMO measure assesses the suitability of the data for factor
analysis and ranges from 0 to 1, with higher values indicating
better suitability. Values of 0.631, 0.696, and 0.615 were
generally considered acceptable for factor analysis. The Bartlett
test of sphericity tests the null hypothesis that the
intercorrelations among the variables are all equal to 0. It tests
whether the observed correlation matrix is an identity matrix.
If the test is significant, it indicates that the correlations among
the variables are not all equal to zero and factor analysis may
be appropriate. In this case, the tests were significant (P<.001),
indicating that the factor analysis was appropriate for the data.

Tables 2-4 present the rotated component matrices for the haptic,
visual, and postsession feedback variables, respectively. The
rotated component matrix shows the factor loadings for each
variable (haptic feedback 1, haptic feedback 2, etc) for each
factor (component 1 and component 2). Factor loadings
represent the degree to which each variable is associated with
each factor. A factor loading of 0.7 or higher is considered a
strong loading, while a factor loading between 0.4 and 0.7 is
considered moderate. On the basis of these cutoffs, haptic
feedback 1, 3, 5, and 6 had strong loadings on component 1,
whereas haptic feedback 4 had a strong loading on segment 2.
Haptic feedback 2 had a moderate loading on component 1,
visual feedback 1-5 had strong loadings on component 1,
whereas visual feedback 2 had a moderate loading on component
2 and postsession feedback 1, 2, 3, and 5 have strong loading
on component 1, and postsession feedback 6 had moderate
loading.
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Table 1. Kaiser-Meyer-Olkin and Bartlett tests.

Postvisit feedbackVisual feedbackHaptic feedbackTest

0.6150.6960.631Kaiser-Meyer-Olkin measure of sampling adequacy

Bartlett test of sphericity

38.8 (15)27.8 (15)59.5 (15)Chi-square (df)

.001.02<.001P value

Table 2. Rotated component matrix (haptic feedback [HF]).

Component 2Component 1

—a0.935HF1

—0.683HF2

—0.795HF3

0.979—HF4

—0.905HF5

−0.4590.763HF6

aNot available.

Table 3. Rotated component matrix (visual feedback [VF]).

Component 2Component 1

—a0.805VF1

0.788—VF2

—0.874VF3

0.749−0.401VF4

—0.776VF5

—0.707VF6

aNot available.

Table 4. Rotated component matrix (postsession feedback [PF]).

Component 2Component 1

—a0.951PF1

—0.728PF2

—0.702PF3

−0.867—PF4

—0.783PF5

0.6770.417PF6

aNot available.

Reliability
Tables 5-7 provide statistics that can be used to evaluate the
reliability of a scale or survey. Generally, a high corrected
item-total correlation and a high Cronbach α are preferable. On

the basis of Cronbach α values, haptic feedback 4, visual
feedback 4, and postsession feedback 4 may be less reliable
items, as they have a negative corrected item-total correlation,
and deleting the items would result in a higher Cronbach α.
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Table 5. Item-total statistics (haptic feedback [HF]).

Cronbach α if item deletedCorrected item-total correlationScale variance if item deletedScale mean if item deleted

.6330.867312.69343.11HF1

.7340.541410.85048.44HF2

.6900.681350.84044.39HF3

.885−0.198537.67338.44HF4

.6510.785310.23544.00HF5

.7090.601333.17644.67HF6

Table 6. Item-total statistics (visual feedback [VF]).

Cronbach α if item deletedCorrected item-total correlationScale variance if item deletedScale mean if item deleted

.4310.377139.67634.17VF1

.4860.321172.35338.33VF2

.2750.628115.31035.39VF3

.762−0.280215.55927.17VF4

.3930.576150.95835.61VF5

.3570.480118.02933.50VF6

Table 7. Item-total statistics (postsession feedback [PF]).

Cronbach α if item deletedCorrected item-total correlationScale variance if item deletedScale mean if item deleted

.3910.809127.50727.72PF1

.5230.516154.61429.44PF2

.5420.543168.18329.22PF3

.768−0.083197.32419.50PF4

.4940.575145.76527.33PF5

.6570.212154.40825.94PF6

Test of Hypothesis

Prior Experience in Conducting Interviews Results in a
Lower Cognitive Load
Table 8 shows the mean ratings for 3 different types of feedback
(haptic, visual, and postsession) for the 2 groups: those with
experience conducting interviews and those who did not. The
haptic feedback rating for the group with interview experience
was lower (4.84) than that for the group without interview
experience (7.03). The visual feedback rating was almost similar
for both groups (4.38 for those with experience, 4.22 for those
without). However, the postvisit feedback rating was higher for
the group with experience (3.41) compared with the group
without experience (2.42). In the case of haptic feedback, the
mean rating of the respondents with experience in conducting
interviews was lower than that of those without experience,
indicating that prior experience in conducting interviews results
in a lower cognitive load.

Most participants with prior interview experience reported that
although a learning curve was associated with haptic feedback,

it allowed them to focus on their interpersonal skills, mainly
speaking balance, pauses, and articulation. One participant
claimed as follows:

The haptics were unintrusive. They were subtle
enough, which helped me maintain my pace, yet
distinctive enough when I needed to show improved
speaking balance, enabling me to pause and ask
questions.

Another participant stated as follows:

In most workplace settings, ongoing, targeted, and
specific feedback are more powerful than post-session
feedback as they allow you to make real-time
improvements. Unlike post-session feedback, haptic
feedback does not demand users to recollect past
conversations or distract users with visual cues.
Instead, it allows you to make real-time improvements
to your interpersonal skills and helps you focus on
maintaining body language and eye contact.
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Table 8. Group statistics (haptic, visual, and postsession feedback).

Values, mean (SD; SE)Feedback and experience conducting interviews

Haptic feedback

7.0346 (3.99580; 1.10824)No (n=13)

4.8362 (3.31895; 1.48428)Yes (n=5)

Visual feedback

4.2232 (2.17168; 0.60232)No (n=13)

4.3788 (2.97528; 1.33059)Yes (n=5)

Postsession feedback

2.4179 (1.29804; 0.36001)No (n=13)

3.4054 (3.34773; 1.49715)Yes (n=5)

Correlation Between Prior Experience, Real-Time
Feedback, and Performance
Tables 9 and 10 present the nonparametric test results to
determine whether there is any correlation between prior

experience in conducting interviews, real-time feedback, and
performance.

Table 9. Nonparametric test results comparing the cognitive load between the respondents with experience conducting interviews and without experience
conducting interviews.

Sum of ranksMean rankFeedback and experience conducting interviews

Haptic (n=18)

135.0010.380 (n=13)

36.007.201 (n=5)

Visual (n=18)

125.009.620 (n=13)

46.009.201 (n=5)

Postsession (n=18)

123.009.460 (n=13)

48.009.601 (n=5)

Table 10. Wilcoxon inferences test results comparing the cognitive load between the respondents with experience conducting interviews and without
experience conducting interviews.

Real-time feedbackPerformancePostsession feedbackVisual feedbackHaptic feedback

6632.00031.00021.000Mann-Whitney U

99123.00046.00036.000Wilcoxon W

−1.189−1.191−0.049−0.148−1.134Z score

.23.23.96.88.26P value (asymptotic signif-
icance; 2-tailed)

.30.30>.99.92.29P value (exact significance

2a; 1-tailed significance)

aGrouping variable: experience conducting interviews.

The findings from hypothesis A led to the assumption that
participants with an interviewing experience who are subjected
to real-time feedback (haptic and visual) will show improved
performance compared with novice users because of the
difference in the spare cognitive capacity that results from
experience. A controlled experiment conducted by Zhou et al
[14] previously tested this hypothesis with surgical residents.

According to their findings, haptic feedback not only enhances
performance but also counters the effect of cognitive loading,
especially in the accuracy of task performance [14]. We
attempted to test this hypothesis with our target group to
determine whether the same findings were applicable to our
study.
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On the basis of these results, the haptic feedback group with no
prior experience had the highest average rank, followed by the
visual feedback and postvisit feedback groups. This suggests
that, on average, participants with no experience conducting
interviews had a higher ranking in haptic feedback compared
with those without experience. However, when calculating the
difference in means, the findings indicated that there was no
significant difference between the means of haptic feedback,
visual feedback, and real-time feedback (haptic+visual) between
the 2 groups (P=.26, P=.88, and P=.23, respectively). In
addition, there was no significant difference between the 2
groups in postsession feedback and performance (P=.96 and
P=.23, respectively).

Although our findings contradict the hypothesis suggesting a
correlation between prior experience in conducting interviews,
real-time feedback, and performance, it is important to note that
this finding could result from a small sample size (especially
n=5 for respondents with prior experience).

The Performance of the Feedback Modality Largely
Depends on the Cognitive Load Associated With the
Feedback Tool
On the basis of Figure 5, haptic feedback has the highest ratings
for all demands, whereas postfeedback has the lowest ratings
for these factors. The test presented below shows the differences
in demand between the feedback modalities (Table 11).

The Kruskal-Wallis test is a nonparametric statistical test used
to compare the medians of 2 or more groups. It is often used
when the assumptions of the parametric 2 tailed t test or
ANOVA are not met, such as when the data are not normally
distributed or have a nonhomogeneous variance. The P value
represents the probability of obtaining observed results if the
null hypothesis is true. The null hypothesis is that there is no
difference in the medians of the groups being compared, ie,
haptic, visual, and postsession feedback modalities. A P value
of less than .05 is typically considered statistically significant,
meaning that the null hypothesis can be rejected and the results
are likely not due to chance. On the basis of the above results,
the mental and temporal demands between the 3 modalities are
significantly different, with the highest demand being in the
haptic modality group. Physical, effort, performance, and
frustration demands were not significantly different between

the groups. However, the postfeedback group had the lowest
demand values.

The Wilcoxon signed-rank test, seen in Table 12, was used to
compare the means of the postsession feedback and the haptic
feedback, as well as the means of the postsession feedback and
the visual feedback.

Table 12 shows the number and mean rank of negative ranks,
positive ranks, and ties for each comparison. Negative ranks
refer to cases in which the postsession feedback had a lower
mean than the comparison (haptic or visual feedback). Positive
ranks refer to cases where postsession feedback had a higher
mean than the comparison group. Ties refer to cases in which
the mean of the 2 groups was equal.

For the comparison between postsession feedback and haptic
feedback, there were 15 negative ranks, 3 positive ranks, and 0
ties. This suggests that the mean of the postsession feedback
group was lower than that of the haptic feedback group in most
cases, but there were a few cases where the mean of the
postsession feedback group was higher.

For the comparison between postsession feedback and visual
feedback, there were 16 negative ranks, 2 positive ranks, and 0
ties. This suggests that the mean of the postsession feedback
group was lower than that of the visual feedback group in most
cases, but there were a few cases where the mean of the
postsession feedback group was higher. Table 13 presents the
test statistics.

For the comparison between postsession feedback and haptic
feedback, the Z score was −3.245 and the P value was .001.
This indicates that the null hypothesis can be rejected, and that
there is a significant difference between the means of postsession
feedback and haptic feedback, where postsession feedback had
the lowest mean. For the comparison between postfeedback and
visual feedback, the Z score was −2.940, and the P value was
.003. This indicates that the null hypothesis can be rejected and
that there is a significant difference between the means of
postsession feedback and visual feedback, where visual feedback
had the highest mean. For the comparison between postsession
feedback and real-time feedback (haptic+visual), the difference
was significant (P=.001), indicating that postfeedback modalities
had a lower mean than real-time modalities. These findings
indicate that feedback modalities with the lowest cognitive loads
result in increased performance and efficacy.
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Figure 5. NASA Task Load Index findings comparing the cognitive load associated with each feedback.

Table 11. Kruskal-Wallis test results.

Mean rankFeedback modality

FrustrationPerformanceEffortTemporal demandPhysical demandMental demand

29.1433.8630.393633.0335.47Haptic (n=18)

29.3126.8128.3628.8926.8928.14Visual (n=18)

24.0621.8323.7517.6122.5818.89Postsession feedback
(n=18)

.52.07.43.002.08.006P value

Table 12. Wilcoxon signed-ranks test results.

Sum of ranksMean rank

Postsession feedback: haptic feedback (n=18)

160.0010.67Negative ranks (n=15)

11.003.67Positive ranks (n=3)

——aTies (n=0)

Postsession feedback: visual feedback (n=18)

153.009.56Negative ranks (n=16)

18.009.00Positive ranks (n=2)

——Ties (n=0)

aNot available.
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Table 13. Test statistics based on positive ranks.

Postsession feedback (real time)Postsession feedback (visual)Postsession feedback (haptic)

−3.419a−2.940a−3.245aZ score

.001.003.001P value (asymptotic sig-
nificance; 2-tailed)

aBased on positive ranks.

Discussion

Overview
This study sought to investigate the efficacy of the 3 feedback
tools while measuring their cognitive load in nonclinical
participants in a nonclinical setting. The findings demonstrated
that postsession feedback (received at the end of the interview
session) was the feedback tool that caused the lowest cognitive
load as opposed to real-time feedback modalities (received
during the interviewing session). An individual’s performance
largely coincided with the cognitive load associated with the
feedback tool. Through our study, we discovered that cognitive
workload moderates the relationship between the efficacy of
feedback tools and their impact on performance (speaking
balance and pace) such that their association becomes weaker
or stronger depending on how high or low an individual’s
cognitive load rating is while using the feedback tool.
Consequently, the lower the cognitive load caused by the
feedback tool, the better the performance and efficacy of the
feedback tool, and vice versa.

The analysis of the poststudy survey also raised several
important implications. The findings of the poststudy survey
are discussed in the Principal Findings section.

Principal Findings

Feedback Is Most Effective When It Is Improvement
Focused
The results demonstrate that receiving feedback at the end of
the session was more effective than receiving feedback during
the session. In our study, real-time feedback concerning pace,
articulation, and speaking balance was extensively provided
through visual cues and haptics. In the postsession feedback,
feedback was conveyed in the form of a written summary that
included ratings, success criteria, and a performance summary.

Gamlem et al [15] state that users perceive feedback to be the
most effective when it includes improvement-focused
information that clarifies the next steps for learning. In our
study, it was notable that most users found postsession feedback
to be descriptive as it highlighted specific areas for improvement
and explained why they received a particular rating or score. In
contrast, real-time feedback tools provided evaluative feedback
and failed to aid in long-term performance improvement. Users
seeking performance improvement preferred feedback that
helped them answer questions such as “What went wrong,”
“What we learned today,” and “What could have been done
better” [16]. These findings suggest that the innate quality of
feedback makes the tool more effective than the timing of
feedback (during or after the session). According to one

participant, “Effective feedback helps promote personal and
professional growth by offering continuous support, highlighting
areas of improvement, and conveying correct standards of
performance so that individuals can work toward improvement.”

Preference Toward the Feedback Tool Largely Depends
on the Learning Style
The VARK (visual, aural, read or write, and kinesthetic) model
developed by Fleming and Mills suggests that learning styles
depend largely on the sensory modalities involved in
understanding and processing information [17]. According to
this model, visual learners process information best if they can
see it. Auditory learners prefer to hear information; read-or-write
learners prefer to see written words; and kinesthetic learners
acquire knowledge through active participation.

According to the poststudy survey, the participant’s preference
for the feedback tool coincided with their learning styles and
impacted how they perceived and received the feedback given.
This study found that 78% (14/18) of the study participants had
multimodal learning style preferences and only 22% (4/18) had
unimodal preferences. Among the multimodal learning styles,
the most preferred mode was bimodal: 39% (7/18) suggested
combining visual feedback with postsession feedback, 28%
(5/18) desired a combination of haptic feedback with postsession
feedback, and 11% (2/18) suggested a combination of visual
feedback and haptic feedback.

The majority (14/18, 78%) of the users exhibited multimodal
learning style preferences, indicating that users respond to
feedback effectively as long as the feedback methods include
a blend of activities that stimulate the VARK sensory modalities.
Knowledge of individuals’ learning styles has implications for
designing and developing practical feedback tools tailored to
meet physicians’ learning preferences, as it directly impacts
their performance.

One of the limitations of this study was its relatively small
sample size. Therefore, these findings cannot be generalized to
all health care staff and physicians. Further studies need to be
conducted to examine the correlation between performance
using feedback modalities and the learning styles of physicians.
This would help us to further explore the possibility of
combining 2 or more feedback modalities and testing their
efficacy.

The Need for Real-Time Feedback Modalities to Offer
Customization
Knowledge of personalizing real-time feedback modalities to
improve interpersonal communication is largely underdeveloped.
Understanding how different users perceive and respond to
real-time feedback can help to develop effective feedback
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modalities. In the case of haptic feedback, vibrotactile
stimulation creates only a rudimentary tactile output without a
meaningful feedback loop. This configuration rarely accounts
for the environmental noise. Our findings indicate that the
impact of real-time feedback varies depending on the device
and the setting. As stated by a user, “Haptic waveform effects
can be easily perceivable, but sudden long vibrations can startle
the user if played in a quiet environment such as a clinical
setting or an interview setting.” When testing haptic feedback
on mobile devices, there are fewer instances. Specific
waveforms or rhythms can be misinterpreted as text or call
notification. As a result, careful consideration must be taken to
ensure that haptics are distinct. In addition, vibrations with
increasing intensities or pulse waveforms can distract the user
from their intended task, which may cause the user to turn off
all haptics quickly. However, well-crafted haptics provides
valuable sensory feedback, giving users richer engagement with
their devices.

Our study findings indicate that 78% (14/18) of the users desired
the ability to customize real-time feedback modalities. A total
of 61% (11/18) of users expressed the desire to customize the
sharpness and intensity of the haptics, whereas 28% (5/18)
expressed a need to choose their preferred waveform and
rhythm. According to the participants, different users have
different tolerance levels for tactile feedback. Some waveforms
convey a soft and calming experience, whereas others are either
sharp or mechanical. The different haptic rhythms and intensities
represent a wide range of emotions.

Notably, the preference for haptic rhythms, waveforms, and
intensities also depends on the environment and setting. Users
can explore various haptic and visual feedback experiences
through customization to determine which option works best
in a given environment or setting. As reported by the user, “The
preference of a real-time feedback modality largely depends on
the user’s environment. In stressful environments, such as
clinical settings, I would like the ability to customize vibration
patterns and intensities in a way that allows me to receive
feedback in a calm and relaxed manner.” Similar findings were
observed when visual feedback was tested. When asked about
their preferred feedback tool, one participant responded, “I think
my preference would change depending on my environment.
Visual cues like transitioning or flashing colors may be effective
in web-based environments. However, they may not have the
same effect when applied to in-person clinical settings. In the
case of web-based settings, visual cues can be unintrusive and
beneficial but may be distracting during in-person
conversations.”

The above feedback suggests the need to explore (1) whether
customization of real-time feedback modalities helps improve
its efficacy and (2) the impact of real-time feedback modalities
in different environments (web-based and in-person) and its
association with cognitive load. Additional features must be
explored to optimize the effects and acceptability of feedback
tools. For example, visual and tactile cues can be implemented
to determine whether different types of feedback or a
combination of feedback can counteract physicians’ burnout.
More participants can be recruited to determine whether the
preference for real-time feedback tools varies in web-based and

in-person settings. Finally, real-time feedback tools must be
customized to provide effective, evaluative, and descriptive
feedback without negatively influencing the cognitive load
associated with becoming accustomed to new feedback tools.

Strengths and Limitations
By investigating multiple feedback tools, this study yields
valuable insights into their comparative effectiveness and
suitability for nonclinical scenarios. Conducting the study in a
nonclinical setting allowed for better control over variables and
reduced potential confounding factors related to medical
conditions or clinical contexts.

Telemedicine, particularly via videoconferencing platforms,
has gained prominence as a prevalent mode of communication
between physicians and patients. Using Zoom for this study
ensures that the findings are highly applicable to the current
health care landscape, where telemedicine plays a significant
role in facilitating remote consultation. Furthermore, using
Zoom allows for an examination of cognitive load during
telemedicine consultations, shedding light on the challenges
and potential distractions encountered by physicians in
web-based health care delivery. As a result, the study’s outcomes
hold considerable relevance for telemedicine practices, providing
valuable insights into optimizing physician-patient interactions
and refining the implementation of feedback tools to enhance
communication efficacy and alleviate cognitive load in remote
medical encounters.

Nevertheless, it is imperative to acknowledge the inherent
limitations of this study. The nonclinical setting used in this
study may not accurately mimic real-world clinical scenarios,
affecting the transferability of the findings to actual medical
practices. Although the experimental setting serves as a valuable
pilot or proof-of-concept study, it may not entirely determine
the effectiveness of the feedback tools in clinical settings. The
use of nonclinical participants limits the generalizability of the
findings to clinical settings.

In addition, the use of Zoom to test feedback tools poses
significant challenges that could influence study outcomes.
Zoom is a videoconferencing platform that lacks the physical
presence of participants. The absence of face-to-face interaction
might compromise the authenticity and reliability of the
feedback tool’s performance. Technical issues such as audio or
video delays or glitches can lead to communication barriers.
These barriers could negatively impact the effectiveness of
real-time feedback, as participants may not fully comprehend
the conveyed information because of interruptions or distortions.
Second, Zoom might not effectively capture subtle nonverbal
cues. These cues play a crucial role in effective communication,
and their absence can hinder the evaluation of feedback tools,
especially in terms of enhancing communication skills. Finally,
Zoom sessions can be mentally taxing, especially in research
contexts where participants are required to multitask between
the platform and the feedback tools. The high cognitive load
induced by the technology itself may interfere with participants’
focus and attention, potentially skewing the efficacy evaluation
results.
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To overcome these limitations, future research should address
these concerns and expand the scope of this study. The inclusion
of diverse participant groups and conducting research in clinical
settings can provide more robust insights into the application
of feedback tools in clinical settings. It is essential to explore
other platforms or methods that better capture face-to-face
interactions and nonverbal cues to enhance the authenticity of
feedback tool evaluations. By acknowledging and working
toward mitigating these limitations, future studies can contribute
to a more comprehensive understanding of the effectiveness of
feedback tools in clinical practice.

Conclusions
This study highlights the potential of bimodal feedback tools
to enhance physician-patient interactions, demonstrating the
need for more extensive investigations in clinical environments.
The integration of both real-time and postsession feedback
presents a promising approach for enhancing physician-patient
communication. Notably, postsession feedback not only

improves performance but also mitigates the impact of cognitive
loading. Our study demonstrated that postsession feedback
contributes to the enhancement of verbal communication
aspects, such as speaking balance, pace, and articulation.
However, it is noteworthy that postsession feedback lacks
specificity in addressing nonverbal competencies, including
voice tone, body movement, facial expression, and eye contact,
which can be better addressed through real-time feedback
modalities [18-20]. To encourage empathic and patient-centered
communication by health care professionals, future research is
imperative to investigate the effectiveness of real-time and
postsession feedback in both the verbal and nonverbal
communication domains. We acknowledge the exploratory
nature of this research while recognizing its contribution to
identifying key factors that warrant further exploration in clinical
scenarios. Subsequent studies in clinical settings will allow a
comprehensive assessment of the efficacy and practical
implementation of feedback tools in physician-patient
interactions.
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