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Abstract

Background: Hypoglycemia is a frequent and acute complication in type 1 diabetes mellitus (T1DM) and is associated with a
higher risk of car mishaps. Currently, hypoglycemia can be detected and signaled through flash glucose monitoring or continuous
glucose monitoring devices, which require manual and visual interaction, thereby removing the focus of attention from the driving
task. Hypoglycemia causes a decrease in attention, thereby challenging the safety of using such devices behind the wheel. Here,
we present an investigation of a hands-free technology—a voice warning that can potentially be delivered via an in-vehicle voice
assistant.

Objective: This study aims to investigate the feasibility of an in-vehicle voice warning for hypoglycemia, evaluating both its
effectiveness and user perception.

Methods: We designed a voice warning and evaluated it in 3 studies. In all studies, participants received a voice warning while
driving. Study 0 (n=10) assessed the feasibility of using a voice warning with healthy participants driving in a simulator. Study
1 (n=18) assessed the voice warning in participants with T1DM. Study 2 (n=20) assessed the voice warning in participants with
T1DM undergoing hypoglycemia while driving in a real car. We measured participants’ self-reported perception of the voice
warning (with a user experience scale in study 0 and with acceptance, alliance, and trust scales in studies 1 and 2) and compliance
behavior (whether they stopped the car and reaction time). In addition, we assessed technology affinity and collected the participants’
verbal feedback.

Results: Technology affinity was similar across studies and approximately 70% of the maximal value. Perception measure of
the voice warning was approximately 62% to 78% in the simulated driving and 34% to 56% in real-world driving. Perception
correlated with technology affinity on specific constructs (eg, Affinity for Technology Interaction score and intention to use,
optimism and performance expectancy, behavioral intention, Session Alliance Inventory score, innovativeness and hedonic
motivation, and negative correlations between discomfort and behavioral intention and discomfort and competence trust; all
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P<.05). Compliance was 100% in all studies, whereas reaction time was higher in study 1 (mean 23, SD 5.2 seconds) than in
study 0 (mean 12.6, SD 5.7 seconds) and study 2 (mean 14.6, SD 4.3 seconds). Finally, verbal feedback showed that the participants
preferred the voice warning to be less verbose and interactive.

Conclusions: This is the first study to investigate the feasibility of an in-vehicle voice warning for hypoglycemia. Drivers find
such an implementation useful and effective in a simulated environment, but improvements are needed in the real-world driving
context. This study is a kickoff for the use of in-vehicle voice assistants for digital health interventions.

(JMIR Hum Factors 2024;11:e42823) doi: 10.2196/42823
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Introduction

Background
Type 1 diabetes mellitus (T1DM) is a chronic condition caused
by an inability of the pancreas to produce insulin and requires
lifelong insulin therapy [1]. Hypoglycemia, also known as low
blood glucose, is a frequent and acute complication in patients
with T1DM [2,3]. Symptoms range from autonomic reactions
such as trembling, anxiety, and hunger (ie, mild hypoglycemia)
to neuroglycopenic reactions such as vision impairment,
weakness, or cognitive impairments (ie, severe hypoglycemia)
[2,4-6]. Hypoglycemia is a major issue in the context of driving:
research has shown that hypoglycemia is associated with a
higher risk of car mishaps [7-9]. In fact, drivers experiencing
hypoglycemia are recommended by the local authorities [10]
to stop the car and treat their condition. However, drivers do
not always comply with these recommendations [11,12]. Thus,
to help reduce hypoglycemia-related car accidents, there should
be an effective warning that informs the driver about an
upcoming hypoglycemic episode and supports the driver in
coping with the situation. Currently, hypoglycemia can be
detected and signaled through flash glucose monitoring (FGM)
or continuous glucose monitoring (CGM) devices (ie, wearable
receivers connected to a sensor inserted in the subcutaneous
tissue of the arm or abdomen) [13]. These allow for glucose
monitoring by displaying the values either continuously (ie,
CGM) or upon active retrieval (ie, FGM) and deliver alerts in
the form of a tone or vibration in case of out-of-range values.
However, these devices present limitations in the context of
driving. For instance, FGM needs to be held close to the sensor
to transfer the data from the subcutaneous sensors to the
monitoring device, that is, the driver needs to actively engage
in a manual gesture to access the glucose value and to look at
a visual display moving the focus of attention from the driving
task. In contrast, allowing the drivers to receive an alert in a
hands-free mode will facilitate warning reception [14] and lower
worry associated with driving with T1DM [15]. However,
hypoglycemia is known to cause a decrease in attention [2,4-6],
thereby challenging the effectiveness of such devices. As 90%
of road accidents are caused by human error, the European
Commission has set new safety technologies as mandatory
equipment for vehicles as of 2022 (eg, driver drowsiness and
distraction warnings and speed assistance) [16]. In-vehicle
warning systems for impaired driver states, such as fatigue [17],
distraction [18], and breath alcohol concentration [19], are

increasingly being developed. However, to the best of our
knowledge, there is no existing implementation for
hypoglycemia. Such technology would be aligned with the
“healing car” concept [20], where vehicles become environments
promoting well-being for passengers, including ergonomic seats,
ambient lighting, relaxation exercises [21], and detection of
health-critical states [22]. This concept is still in its early stages,
but it may become a standard in car manufacturing in the future.
So far, the only attempts of in-vehicle glucose monitoring are
either only proof of concept without user validation [23] or
conceptual work [24]. However, the online community clearly
expressed a need for in-vehicle glucose monitoring and warning
[25].

A growing number of automotive companies are introducing
voice assistance technology into their products [26,27]. Voice
assistants add value not only for the associated consumer
experience but also for their greater safety. Indeed, vocal
interactions have been observed to be the least cognitively
demanding while driving compared with visual and haptic
interactions [28,29]. Moreover, voice assistants are increasingly
being implemented to deliver digital health interventions
[30-33]. Although research is still in its infancy, efforts have
been made to develop voice-based conversational agents to
monitor and support individuals with chronic diseases such as
cancer, cardiovascular diseases, cognitive disorders, or diabetes
[30]. Other recent examples include prevention of excessive
alcohol consumption [34], health education and monitoring,
physical and mental exercise, and nutrition [35]. Furthermore,
a voice assistant delivering a warning is a form of proactive
behavior initiated by the computer rather than the user [36,37].
In-vehicle voice assistants can provide personalized and adaptive
suggestions, but users may ignore proactive behavior if it is
inopportune, violates privacy, or distracts from driving [38-40].
However, emergencies are the most suitable context for
proactive behavior that violates privacy [39].

Objectives
Therefore, we investigate the feasibility of an in-vehicle voice
warning delivered by a built-in voice assistant to alert and
support drivers with T1DM during hypoglycemia. To the best
of our knowledge, there have been no investigations on safe
and effective in-vehicle hypoglycemia warnings to support
drivers with T1DM or on the perception of such technology.
Thus, we sought to answer the following research questions
(RQs):
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• RQ1: How do drivers perceive an in-vehicle voice warning
for hypoglycemia while driving?

• RQ2: How effective is an in-vehicle voice warning in
prompting drivers to cope with hypoglycemia?

RQ1 refers to the attitude of drivers toward the warning, whereas
RQ2 refers to the driver’s compliance behavior once the warning
is delivered. Answering these RQs will allow us to conclude
on the feasibility of an in-vehicle voice warning for
hypoglycemia. To control for individual factors influencing the
perception of the warning [41], we also assessed technology
affinity.

Methods

Study 0: Preliminary Assessment With Healthy
Individuals in Simulated Driving

Driving Setting
Participants performed the task in a driving simulator (Carnetsoft
Inc) with 3 monitors displaying the front, left, and right views.
The central monitor also showed the cockpit and navigation
arrows. The participants used a steering wheel and pedals
(Logitech Driving Force G29) to control the simulator, which
was set to automatic (ie, no clutch or gear shifter). The
simulator’s computer was connected to a stereo speaker with a
subwoofer, which was kept at a constant volume. To control
for driving difficulty, 3 environments were used: highway,
countryside, and town, with the first and last being the least and
most difficult, respectively.

In-Vehicle Voice Warning Simulation
Before testing a hypoglycemia voice warning with people with
T1DM, we tested the concept of a car voice assistant as an
interface between a dedicated monitoring system and the user
with healthy participants. As the participants were not affected
by hypoglycemia, the first version of the warning was a
simulated low fuel warning (“The car needs a refill. Please pull
over and turn off the engine”). Although not health related, it
signaled an event of reasonable urgency that required safely
stopping the car. Note that the participants were informed that
this message aimed to ask them to stop the car as soon as
possible and that they did not need to look for a gas station.

The warning was simulated using the Wizard-of-Oz method,
where the conversational turns produced by the voice assistant
were played by the experimenter [42] from a laptop using
predefined keyboard keys. The turns were based on the Google
Cloud text-to-speech engine, with a de-DE-Wavenet-C voice,
a speed of 1.11 times the normal native speed of the specific
voice, and a pitch of −1.20 semitones from the original pitch.
The experimenter’s computer was connected to the same sound
system as the driving simulators so that the voice warning could
be heard as part of the driving simulation. No visuals were
included.

Voice Warning Evaluation Measures
To assess the RQs, we assessed participants’ perception of the
warning (self-reported through the modular evaluation of key
Components of User Experience [meCUE]; 10 constructs

evaluated on a 7-point Likert scale and a general evaluation
evaluated on a 10-point scale [43,44]) and participant
compliance with the warning (measured by the experimenter
manually assessing if the participant would pull over and stop
the car following the warning, and reaction time in seconds
from the timestamp of the warning to the timestamp of the car
fully stopped). As the perception of technology can be
influenced by technology-related personality [45], we also
measured technology affinity (measured by the Affinity for
Technology Interaction [ATI], a 6-point Likert scale [46]).
Finally, qualitative feedback was collected informally.

Evaluation Procedure
The participants were welcomed, informed about the procedure,
and invited to sit in the simulator. The voice assistant introduced
itself and invited the participants to familiarize themselves with
the setting, including the 3 environments. The training also
screened for motion sickness.

In the experimental session, participants drove 12 times, with
4 blocks of 3 drives each, for approximately 5 minutes per drive.
The driving environment’s order and starting point varied to
minimize habituation. The drive began when the voice assistant
prompted participants to start the engine. A timer started to
deliver the low fuel warning at either 100 or 200 seconds to add
variation and minimize habituation effects. At the end of the
session, participants completed the meCUE.

Data Analysis
Participants were characterized by sex, age, and driver’s license
duration. The ATI was aggregated as a whole, and meCUE
items were aggregated per construct. All reports were aggregated
across the sample, with mean and SD. Compliance was coded
as binary (0=not compliant, 1=compliant) and reported in terms
of frequency. Reaction time was aggregated in seconds across
participants and phases, with mean and SD.

Study 1: Assessment With Individuals With T1DM in
Simulated Driving
Following the iterative approach described earlier, we conducted
3 exploratory iterations. This study was part of a clinical trial
registered at ClinicalTrials.gov (NCT04035993).

Driving Setting
The driving setting was the same as in study 0.

In-Vehicle Voice Warning Simulation
On the basis of the results of study 0, we adapted the warning
to hypoglycemia instead of low fuel, using the fewest
conversational turns possible [47]. To ensure that the drivers
were available, the voice assistant started with a receptivity
check: “May I disturb you?”

We designed the warning based on the guidelines of the Swiss
Diabetes Association [10], which recommends taking
carbohydrates and stopping the car as soon as signs of
hypoglycemia are noticed. To give the driver a sense of
autonomy [48], we designed the warning to suggest eating
carbohydrates rather than directly engaging in stopping the car.
However, if the driver did not have carbohydrates, they were
asked to pull over. On the basis of the feedback, we enhanced
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the voice warning used in the following study to recommend
pulling over directly (detailed conversation flow is available in
Multimedia Appendix 1).

As in study 0, the warning was simulated with a Wizard-of-Oz
method [42], and the turns were generated by recording the
same voice. However, to reduce fatigue and cognitive load, we
decreased the speed and pitch to 0.93 times the normal speed
and −4.8 semitones from the original pitch, respectively. As in
study 0, the experimenter would play the turns from a Microsoft
Windows laptop using predefined keyboard keys to play
prerecorded voice sounds. However, in study 1, the laptop
program included a visualization mirrored on a smartphone.
The visuals consisted of a blue circle that gradually faded in
and out when the voice assistant was speaking. As in study 0,
the experimenter’s computer was connected to the same sound
system as the driving simulators, so that the voice assistant
could be heard as part of the driving simulation.

Voice Warning Evaluation Measures
Perception assessment focused on evaluating the voice assistant
as a trustworthy driving companion. Specifically, participants
completed the Acceptance and Use of Technology (AUT)
questionnaire [49,50], the Session Alliance Inventory (SAI)
[51], and the Emotional Trust and Competence Trust subscales
(henceforth Trust) of the Trust and Adoption questionnaire [52].

To assess technology affinity, participants completed the
streamlined scale of the Technology Readiness Index (TRI 2.0)
[53]. Items were rated on a 5-point Likert scale (ie, 1=totally
disagree, 5=totally agree). We also added a question on whether
the participants had previous experience with in-vehicle voice
assistants (ie, “Have you already had experience with in-vehicle
voice assistants?” with a yes or no answer).

Finally, to obtain qualitative and more in-depth feedback for
improvement, we conducted a semistructured interview about
their experience with the warning (the interview questions are
provided in Multimedia Appendix 2).

Evaluation Procedure
The procedure was the same as in study 0, except that
participants drove only once for 5 minutes (the evaluation
procedure is detailed in Multimedia Appendix 3). Before
driving, we ensured that the participants had normal blood
glucose levels (5-8 mmol/L).

Data Analysis
The sample of participants was characterized by sex, mean age,
and mean duration of their driver’s license before the study.

TRI and SAI were aggregated as a whole, and the AUT and
Trust items were aggregated per construct. Scores from the
negatively formulated questionnaire items were inverted.
Previous experience with an in-vehicle voice assistant was
reported in terms of frequency. All these reports were aggregated
across participants of each iteration, with mean and SD.

To further explain results in perception, they were associated
with technology affinity measures. The difference in perception
between participants with and without experience with an

in-vehicle voice assistant was tested using a 2-sided t test, and
it was correlated with the TRI constructs using a Pearson test.

Compliance was defined as whether the participant would
comply with the warning and was coded as binary (0=did not
comply, 1=complied). Reaction time was aggregated in seconds
with mean and SD. Compliance behavior was aggregated across
participants of each iteration.

Feedback was summarized in positive and negative topics, with
a focus on the most prominent suggestions for improvement.
Feedback was aggregated across participants of each iteration.

Study 2: Assessment With Individuals With T1DM in
Real-World Driving Undergoing Hypoglycemia
Following the iterative approach described earlier, we conducted
2 exploratory iterations. This study was part of a clinical trial
registered at ClinicalTrials.gov (NCT04569630).

Driving Setting
Participants drove in Volkswagen Touran on a closed circuit
accompanied by a driving instructor. Dual pedals allowed the
driving instructor to intervene and stop the car if necessary. The
driving environments on the test track corresponded to the
environments of the driving simulator used in the previous
studies. Straight paths, turns, crossroads, stop signs, and a
pedestrian crossing with a doll were used to implement the
highway, countryside, and town scenarios. Artificial obstacles
(eg, boxes and lines of traffic pylons) were used to simulate the
traffic.

In-Vehicle Voice Warning Simulation
On the basis of the participant feedback from study 1, we revised
the voice warning and addressed low trust ratings by explaining
the cause of the warning. We simulated driving behavior as a
trigger to detect hypoglycemia while driving, as in the study by
Lehmann et al [54]. We created 2 variations of the simplified
hypoglycemia notification—one with a statement of the cause
(driving behavior) and one without. The final recommendation
was reformulated as stricter but less directive than that in study
1.

In the second iteration, we simplified the conversational flow
by removing the receptivity check (“May I disturb you?”) and
the final recommendation (Multimedia Appendix 1 provides
the conversation flow).

We used the Wizard-of-Oz method to simulate the warning, as
in studies 0 and 1. We implemented the voice assistant in a
smartphone with the same voice as in study 1. However, the
experimenter had to control it remotely (outside the car), so we
implemented the interaction in a smartphone app controlled by
a remote desktop application. The experimenter used the
smartphone screen to control the voice warning delivery;
therefore, no visualization was included. Because of
network-related slowdowns in the remote control, we used a
combination of remote control and speech-to-text programing.

Voice Warning Evaluation Measures
All measures were the same as in study 1. Reaction time was
calculated from the warning onset until the car reached a
velocity of 0. In addition, at the end of the experiment, we
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included a questionnaire item asking which of the 2 types of
warning they preferred, that is, the warning including a statement
of the cause that triggered the warning or the one without it, or
if they would not use either of them.

Evaluation Procedure
After welcoming participants and explaining the procedure and
simulated voice assistant, the voice assistant introduced itself
as an in-vehicle assistant to support drivers with hypoglycemia.
The participants then completed a training drive.

The warning was delivered at different stages of hypoglycemia
(see the study by Lehmann et al [54]). Drive blocks were defined
based on blood glucose levels. In the first phase, the participants
drove at normal glucose (5-8 mmol/L). In the second phase,
blood glucose level was progressively lowered below the
moderate hypoglycemia threshold (3.0 mmol/L) to a target range
of 2.0 to 2.5 mmol/L. In the third phase, moderate hypoglycemia
was maintained. In the fourth phase, participants drove again
with normal blood glucose levels (Multimedia Appendix 3).

To explore the effect of blood glucose level on warning
perception and compliance, we delivered a warning at the end

of the last drive of each phase. Participants received 2 warnings
with an explanation and 2 without, in randomized order.

Data Analysis
Data analysis was carried out as in study 1.

Ethical Considerations
Study 0 was approved by the Ethics Board of ETH Zürich,
Switzerland (2019-N-32), and study 1 and study 2 were
approved within the context of the HEADWIND study by the
cantonal ethics commission of Bern, Switzerland (2020-00685
and 2021-02381, respectively). Study 1 and study 2 are available
at ClinicalTrials.gov (NCT04035993 and NCT04569630,
respectively). All participants provided written informed
consent.

Results

Study 0: Preliminary Assessment With Healthy
Individuals in Simulated Driving
Results are summarized in Figure 1.

Figure 1. Violin plots of (A) Affinity for Technology Interaction (ATI; min=1, max=6), (B) score values across the constructs of modular evaluation
of key Components of User Experience (meCUE; min=1, max=7, except for overall evaluation, which is min=1, max=10), and (C) reaction time across
phases in study 0 (n=11). The dots represent the group mean; the dashed line represents the overall mean. RT: reaction time; sec: seconds.

Recruitment and Participants
We recruited 11 healthy individuals with a valid driver’s license
via a web advertisement (ie, University of Zurich marketplace).
One participant was excluded owing to simulator sickness. Thus,
we included 10 participants (n=4, 40% female; n=6, 60% male)
with an average age of 30.4 (SD 7.8; range 23-47) years and
holding a license for 11 (SD 7.5; range 2-26) years, on average.

Technology Affinity Measure
Participants showed a mean ATI of 4.2 (SD 1; Cronbach α=.91),
which is 70% of the maximal value.

Perception Measure
The meCUE (Cronbach α=.7) revealed a mean overall evaluation
of 6.4 (SD 1.6), which is 64% of the maximal value. Moreover,
the highest mean values were achieved for usability (mean 6.2,

SD 0.6, 89%) and usefulness (mean 5.6, SD 0.9, 80%), whereas
lower values were observed for commitment (mean 1.5, SD 0.4,
21%), positive emotions (mean 2.7, SD 1.1, 39%), negative
emotions (mean 2.7, SD 1, 39%), intention to use (mean 3.1,
SD 1.1, 44%), and product loyalty (mean 2.6, SD 0.7, 37%). A
low value for negative emotions reflects a more positive
evaluation.

To explain the perception results with the technology affinity
measure, we correlated each meCUE construct with ATI. We
observed a correlation between ATI and intention to use
(ρ=0.70; P=.02). All the other correlations were not significant
at the .05 level.

Compliance Measure
All the participants complied with the warning and stopped the
car. Participants took 12.6 (SD 5.7) seconds on average.
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Qualitative Feedback
Finally, some participants reported that the voice assistant spoke
too fast to deliver information during a driving task without
being distracting.

Study 1: Assessment With Individuals With T1DM in
Simulated Driving
Results are summarized in Figures 2 and 3.

Figure 2. Violin plots of (A) count of previous experience, (B) score values across the constructs of Technology Readiness Index (TRI; min=1, max=5),
(C) score values across the constructs of Acceptance and Use of Technology (AUT; min=1, max=5), (D) Session Alliance Inventory (SAI) scores
(min=1, max=5), (E) Trust scores (min=1, max=5), and (F) reaction time across iterations in study 1 (n=18). The dots represent the group means; the
dashed line represents the overall mean within an iteration. RT: reaction time; sec: seconds.

Figure 3. Thematic summary of participants' feedback in study 1 (n=18).
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Recruitment and Participants
We recruited 20 patients with T1DM from the Department of
Diabetes, Endocrinology, Nutritional Medicine, and Metabolism
at the Bern University Hospital. Participants needed functional
insulin treatment, good insulin self-management knowledge, a
driver’s license, and active driving in the past 6 months. We
excluded one participant owing to simulator sickness and one
participant owing to technical errors in the warning delivery.
This resulted in a total of 18 participants (n=6, 33% female and
n=12, 67% male; mean age 31.4, SD 7, range 24-44 years; mean
driver’s license age 13, SD 7.5, range 4.5-28.6 years). The first
iteration had 9 participants, the second iteration had 7, and the
third iteration had 2 participants. Although the last iteration’s
sample size was small, it provided useful feedback to improve
the warning for study 2.

Technology Affinity Measure
Seven participants had previous experience with an in-vehicle
voice assistant (n=2, 28% in the first iteration; n=3, 43% in the
second iteration, and n=2, 28% in the third iteration). TRI was
3.4 (SD 0.6, Cronbach α=.85), or 68% of the maximum.
Specifically, TRI was 3.5 in the first and second iterations (SD
0.6 and 0.7, respectively) and 2.7 in the third iteration (SD 0.9).

Perception Measure
Perception averaged 3.9 out of 5 (SD 0.8, 78%) and remained
stable across iterations. Average AUT (Cronbach α=.81) values
were 3.8 (SD 1) in the first iteration, 4 (SD 0.7) in the second
iteration, and 3.8 (SD 0.8) in the third iteration. Effort
expectancy and facilitating conditions had the highest values
across all iterations, whereas behavioral intention always had
the lowest values.

SAI (Cronbach α=.79) averaged 3.7 out of 5 (SD 0.5, 74%) and
increased slightly over the iterations, from 3.4 (SD 0.7) in the
first iteration to 3.6 (SD 0.6) in the second iteration to 4.1 (SD
0.1) in the third iteration.

Trust (Cronbach α=.8) averaged 3.1 out of 5 (SD 0.7, 62%),
was stable across constructs, and had the lowest values of the
3 perception measures. Trust averaged 3.1 (SD 0.8) in the first
iteration, 2.9 (SD 0.6) in the second iteration, and 3.3 (SD 0.6)
in the third iteration.

To explain the perception results with technology affinity, we
tested the difference in perception (AUT, SAI, and Trust)
between participants with and without previous experience with
in-vehicle voice assistants. The means of all constructs,
excluding facilitating conditions, were slightly higher for
participants with previous experience. However, a 2-sided t test
revealed no significant result (ie, P>.05).

We also correlated perception with TRI and observed a
correlation between the optimism construct and performance
expectancy (ρ=0.49; P=.04), behavioral intention (ρ=0.52;
P=.03), and SAI (ρ=0.57; P=.01). All the other correlations
were not significant (P>.05).

Compliance Measure
All the participants complied with the warning. In the first
iteration, all participants answered yes or no to the receptivity
check (“May I disturb you?”) and when asked if they had
carbohydrates on hand. Five of the 9 participants answered yes
to the latter question, although they did not. Two of those 9
participants stopped the car although they were not explicitly
advised to do so. In the second iteration, all participants
answered the prompts with yes and stopped the car as advised.
One participant gave an affirmative mhm when asked, “May I
disturb you?” during the hypoglycemic phase but were otherwise
compliant. Because we used the Wizard-of-Oz method, the
experimenter interpreted the affirmation. However, a current
voice assistant might have interpreted it as an error. In the third
iteration, both participants answered the prompts with yes and
stopped the car. Across iterations, compliance took
approximately 22 seconds. In particular, compliance took
approximately 20 (mean 20.7, SD 6.2) seconds in the first
iteration, approximately 17 (mean 16.7, SD 1.2) seconds in the
second iteration, and approximately 31 (mean 31.7, SD 10.6)
seconds in the third iteration.

Qualitative Feedback
Participants judged the voice warning as pleasant, simple, and
as clear and efficient (n=15, n=11, and n=13, respectively). The
topics for improvement are summarized in Figure 3. Note that
these results are best understood when compared with
Multimedia Appendix 1.

Given that Trust showed the lowest values in the first iteration,
in comparison with the other perception measures, we decided
to specifically ask participants, in our second and third iterations,
what would help them trust the warning more. Of the 9
participants included in both the second and third iterations, 5
(55%) said they would just need to have a prolonged experience
with the warning, whereas 3 (33%) said they would need to
know what kind of data is used to infer that the driver is about
to experience hypoglycemia. One participant did not know what
would improve their trust.

Study 2: Assessment With Individuals With T1DM in
Real-World Driving Undergoing Hypoglycemia
Results are summarized in Figures 4 and 5.
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Figure 4. Violin plots of (A) count of previous experience, (B) score values across the constructs of Technology Readiness Index (TRI; min=1, max=5),
(C) score values across the constructs of Acceptance and Use of Technology (AUT; min=1, max=5), (D) Session Alliance Inventory (SAI) scores
(min=1, max=5), (E) Trust scores (min=1, max=5), and (F) reaction time across iterations in study 2 (n=20). The dots represent the group means; the
dashed line represents the overall mean within an iteration. RT: reaction time; sec: seconds.

Figure 5. Thematic summary of participants' feedback in study 2 (n=20).
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Recruitment and Participants
The recruitment procedure was the same as in study 2. We
recruited 21 individuals, and 1 participant was excluded owing
to data loss. Thus, we included 20 participants (n=3, 15% female
and n=17, 85% male; mean age 40.9, SD 10.6, range 23-57
years; and holding a license on average since 23.7, SD 11.1,
range 3.1-42.4 years). The first iteration included a sample of
9 participants and the second iteration included a sample of 11
participants.

Technology Affinity Measure
The pretest measurements revealed that 25% (5/20) of the
participants had previous experience with an in-vehicle voice
assistant (2 in the first iteration, and 3 in the second iteration),
whereas TRI was on average 3.4 (SD 0.7; Cronbach α=.44),
which is 68% of the maximal value. In particular, TRI was 3.4
in the first iteration (SD 0.8), and 3.3 in the second iteration
(SD 0.7).

Perception Measure
The overall perception score was 1.7 out of 5 (SD 1.3, 34%).
The results showed a slight increase in mean AUT (Cronbach
α=.95) and Trust (Cronbach α=.85) values between the first and
the second iteration, whereas SAI (Cronbach α=.80) showed a
slight decrease. AUT also showed a considerable increase in
SD. In particular, AUT values were on average 1.4 (SD 1) in
the first iteration, and 1.9 (SD 1.6) in the second iteration; SAI
was overall 2.8 out of 5 (SD 0.8, 56%). Values were on average
3.1 (SD 0.7) in the first iteration and 2.5 (SD 0.9) in the second
iteration; Trust values were on average 1.4 (SD 0.8) in the first
iteration, and 2.3 (SD 1.1) in the second iteration.

Similar to study 1, to explain the perception results with the
technology affinity measure, we tested the difference in
perception (ie, AUT, SAI, and Trust) among participants who
had previous experience with in-vehicle voice assistants and
those who did not. The means of all perception measures,
excluding SAI, were consistently slightly higher in the second
iteration. The means of all constructs, excluding SAI, were
consistently slightly higher for participants who had previous
experience with in-vehicle voice assistants. However, a 2-sided
t test revealed no significant result (ie, P>.05). When correlating
each perception measure with TRI, we observed a correlation
between innovativeness and hedonic motivation (ρ=0.52;
P=.02), a negative correlation between discomfort and
behavioral intention (ρ=−0.46; P=.04), and a negative
correlation between discomfort and competence trust (ρ=−0.45;
P=.05). All the other correlations were not significant (P>.05).

Compliance Measure
All the participants complied with the warning. Two drives
were excluded: one participant stopped once before the warning
was delivered and data from one drive of one participant was
lost. The results showed that the reaction time does not seem
to vary across glycemic phases and, although minimal, there is
a tendency for the reaction time to increase in the second
iteration. Participants took 13.6 (SD 4.5) seconds in the first
iteration and 15.5 (SD 4.1) seconds in the second iteration.

Preference for the Disclosure of the Triggering Cause
One participant was excluded because of data loss. The results
showed that although 10 participants preferred when the warning
was delivered with an explanation for the warning being
triggered (in this case, driving behavior), 8 participants preferred
it without the explanation. One participant stated that they would
not use this in-vehicle voice warning either way.

Qualitative Feedback
In general, and similar to study 1, the participants found the
communication style pleasant and efficient (n=4 and n=5,
respectively). The topics for improvement are summarized in
Figure 5. Note that these results are best understood when
compared with Multimedia Appendix 1.

Discussion

Principal Findings
Most participants had not previously used an in-vehicle voice
assistant, and technology affinity was similar across studies. In
general, the voice warning elicited a positive perception,
although the perception values were lower in the real-car study.
In addition, participants complied with the warning in all studies,
and reaction times were shorter in the real-car study than in the
simulator study. Finally, the participants preferred the voice
warning to be less verbose and prompt fewer interactions with
the driver.

Technology Affinity
Although we did not observe a significant effect on the
perception of the warning, we suspect that the participants may
have experienced a double novelty: using a voice assistant while
driving and experiencing a warning from an in-vehicle voice
assistant. Thus, future research should include a more balanced
sample and compare the perception of a voice assistant–based
warning with a standard warning (eg, an acoustic tone).
Moreover, although we cannot directly compare ATI (used in
study 0) with TRI (used in study 1 and study 2), we can observe
that technology affinity was similar across studies. Although
ATI showed a mean of 4.2 over 7 (60%), TRI showed a mean
of 3.4 over 5 both in study 1 and study 2 (68%). The change in
technology affinity measure was the result of an internal
discussion between the coauthors, and we recommend the
scientific community to use TRI in future research, as it is more
widely used and focuses not only on the interaction but also on
the general attitudes toward new technologies.

Perception
We observed that AUT, SAI, and Trust values were higher in
study 1 (simulated driving) than in study 2 (real-world driving).
This evaluation might have been influenced by the driving
setting. There can be 2 possible reasons. First, participants may
have found the warning to be more distracting in the real car
than in the simulator. However, research shows that drivers are
more in control in real-world driving than in simulated driving
[55]. Second, the technical difficulties in controlling the
driver-assistant interaction owing to network slowdowns might
have affected the user experience, and thus the perception
measures. Future Wizard-of-Oz studies may account for this
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methodological weakness with a more accurate text-to-speech
technology, avoiding remote control, and reducing interactions.

In addition, TRI seemed to have influenced behavioral intention
(AUT) but did not consistently influence the other perception
measures (ie, other constructs of AUT, SAI, and Trust). Thus,
participants may have been excited about the potential of the
voice warning, but they may not have been happy with the actual
experience of using it.

Compliance
The reaction times were short enough to ensure a timely reaction
to the critical event. Blood glucose can change with a maximum
rate of 0.22 mmol/L/min [56]. This means that someone driving
with a normal glucose of 5.5 mmol/L might reach hypoglycemia
(ie, 3.9 mmol/L) within a minimum of 7.5 minutes. Thus,
although experiencing hypoglycemia while driving does not
require an abrupt stop but rather a careful pullover maneuver
and treating the condition, measuring reaction time provided
an insight into the time required to take the first measure (ie,
pullover). Interestingly, the reaction time was shorter in the real
car (study 2) than in the simulator (study 0 and study 1). This
difference may be attributed to the lack of traffic in study 2,
which allowed the driver to pull over faster.

Feedback
Although we aimed to keep the warning conversational,
participants preferred a more direct notification of the problem
without specific recommendations (eg, recommending waiting
until the blood glucose is at its normal level) or polite
formulations (eg, asking for permission to talk). To the best of
the author’s knowledge, there was no in-vehicle voice warning
at the time of the study, and we mostly relied on the guidelines
of the Swiss Diabetes Association [10], while keeping the
conversation as simple as possible. The participants’ feedback
allowed us to improve the warning in this direction.

Implications and Future Directions

Hypoglycemia Warnings
Reportedly, no research has been conducted for in-vehicle
applications providing a hypoglycemia warning. However,
smartphone apps for hypoglycemic events tracking have been
investigated [57]. Although most of the research on glucose
monitoring solutions conducted so far focused on diary apps
rather than warning delivery, a pilot study on a
smartphone-based hypoglycemia warning showed an improved
hypoglycemia awareness and a reduction in daytime
hypoglycemia [58] (other research is still in the phase of
validation [59]). Future research should investigate such
outcomes with an in-vehicle extension of this type of
application.

In-Vehicle Warnings
Although there seems to be no related work testing the voice
assistant of a private vehicle to deliver hypoglycemia warnings,
there is a need for “driver-friendly” in-vehicle glucose
monitoring solutions, expressed by the online community [25].
In particular, drivers with T1DM have contributed to the
Nightscout Foundation [60], a nonprofit organization founded
in 2014 and supporting open source technology for T1DM

management, with the development of a data-sharing app, able
to connect a car to a CGM, and display the glucose trends while
driving on the dashboard of the private vehicle [25]. Moreover,
there has been conceptual work manifesting the need for
collaboration between automotive and medical industries to
improve the safety of drivers with T1DM [24]. However, this
work has not been followed by any implementation.
Furthermore, no testing with the actual users has been
conducted. Our work provides preliminary evidence, both in a
simulated and a real-world environment.

Needless to say, recognizing hypoglycemia is only one part of
glucose monitoring while driving; general imbalance of blood
glucose (including hyperglycemia) can be problematic for the
driver, if not dangerous [61]. Our work can be extended to
hyperglycemia and, therefore, support further the safety of
drivers with T1DM.

Finally, using the in-vehicle voice assistant to deliver a warning
is compatible with current technology: not only are cars
increasingly equipped with voice assistants [26,27] but also the
automotive industry is aware of the relevance of using the
upcoming “in-car proactivity” [62].

Warning Escalation
Our results showed 100% compliance in all 3 studies. This can
only mean that the warning was clear enough for the participant
to understand that it was time to pull over. That is, as all studies
were run in a controlled setting, where an experimental team
was present, and the participant knew they would be
recommended to pull over eventually, we can safely assume
that the experiments experienced a participant bias [63]. Thus,
we cannot conclude that the warning was compelling enough
to motivate the participants to comply (see the Limitations
section). Nevertheless, the warning should be designed to allow
for escalation, whereas in case the driver does not pull over in
due time (eg, 2-3 min [56]) or explicitly rejects the warning,
delayed reprompts with an increasingly severe tone would be
delivered by the voice assistant (eg, “You are at risk of
hypoglycemia. Please stop the car safely and check your blood
sugar, then risk of hypoglycemia. Pull over now”).

Hypoglycemia Detection
Finally, in this paper, we focus on the interface between the
hypoglycemia detection system and the driver, with the aim of
visually distracting them as little as possible. Although the
detection side is beyond the scope of this study, the designed
warning is intended to be produced by a voice assistant built
into the vehicle. Therefore, how a vehicle monitors blood sugar
depends on the technology of the car. For instance, the
aforementioned open source app displaying the glucose levels
on the dashboard of a private vehicle [25] could be enhanced
to connect with the in-vehicle voice assistant and use a voice
warning instead of a visual one. Furthermore, research has been
conducted on how to detect hypoglycemia from the car’s data
[54] and from consumer-available wearable devices [64], with
the argument that CGM devices can impose a social and
financial burden on the individual.
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Limitations and Strengths
Despite our best efforts, this research has 3 main limitations.

First, the studies included a relatively small sample size.
However, this study includes 3 feasibility studies (ie, a
preliminary study with healthy individuals and 2 feasibility
studies with individuals with T1DM), and the research presented
in this paper is intended to be understood as an iterative
development of a hypoglycemic warning. As such, this research
aimed to pioneer the use of in-vehicle voice assistants for a
driver health-related warning, rather than draw conclusions to
be generalized to the population with T1DM. Thus, although
we included a total sample size of 48 individuals, each feasibility
study provides insight into the changes required by the users,
and we provide the scientific community with an opening to
the design of in-vehicle voice assistant–based health-related
warning. Furthermore, previous studies on digital health systems
used a similar sample size [65-67]. Thus, we believe that
although the sample size does not allow drawing conclusions
on the interaction of drivers with T1DM with in-vehicle
hypoglycemia warnings, it still reports pioneer research.

Second, the studies were conducted over a short period. The
participants had only a short-term experience with the warning.
Perception and compliance may therefore be influenced by the
novelty of such an experience, whereas perception may stabilize
with repeated experience [68]. Future research should investigate
the user experience of the warning in a longitudinal study. Third,
these studies did not control for all potentially confounding
variables related to real-world traffic and driver’s priorities. For
instance, both simulator and real-car experiments involved
disadvantages: while assessing the warning in a simulator
allowed a controlled and safe experiment, such a setting remains
artificial and lacks external validity. In contrast, while testing
it in a real car increased the ecological validity of the
human-machine interaction, it did not allow for as much traffic
and speed variation as was possible in the simulator. Future
research should investigate the effects of real-world traffic on
the perception of the warning and compliance behavior.
Moreover, receiving a warning in the presence of a team of
experimenters may have influenced the participant’s verbal and
behavioral responses; participants knew they would receive the

warning sooner or later and had no reason not to follow it (eg,
ignoring the warning because of being late for an appointment).
In a real situation, drivers may not respond as expected or may
even ignore the warning. Future research should test such a
warning in a more ecological context, for instance, in a field
study where the driver may not fall for a participant bias [69].

Finally, as we aimed to test a voice warning, our studies used
a Wizard-of-Oz methodology to avoid problems related to
natural language processing. Note that our studies were
conducted in German-speaking Switzerland, where the German
accents easily vary from region to region. As this aspect was
beyond the scope of our research, we did not implement a
working voice assistant or account for potential fallback intents
triggered by the voice assistant’s failure to understand the user.
Future research should push this research further and examine
the potential danger of delayed treatment of hypoglycemia
owing to the voice assistant’s natural language processing errors.

Conclusions
Although hypoglycemia increases the risk of car mishaps [7,8],
current solutions (eg, CGM and FGM) require visual
human-machine interaction, which is inappropriate for an
in-vehicle context. As voice assistants are increasingly present
in private vehicles [26,27] and the European Commission fosters
safety technologies inside the car [16], we propose to warn the
driver of their critical health state through a voice
assistant–based health warning. This paper reports on an iterative
development and assessment of a hypoglycemia warning. In
particular, we conducted in 3 studies: a preliminary study using
a simulator with healthy participants, a test with individuals
with T1DM in a simulator, and a test with individuals with
T1DM in a real car. This gradual increase in authenticity in the
experimental design allowed us to increase the ecological
validity of our results while keeping experimental control. To
the best of our knowledge, this is the first attempt of such a
comprehensive feasibility assessment of an in-vehicle voice
warning for hypoglycemia. Our results suggest that a voice
warning can be useful, but that proactive behavior in voice
assistants is still emerging and unfamiliar. We hope that these
preliminary findings will foster future research to further
develop in-vehicle hypoglycemia warnings.
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