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Abstract

Background: Social robots are becoming increasingly important as companions in our daily lives. Consequently, humans expect
to interact with them using the same mental models applied to human-human interactions, including the use of cospeech gestures.
Research efforts have been devoted to understanding users’ needs and developing robot’s behavioral models that can perceive
the user state and properly plan a reaction. Despite the efforts made, some challenges regarding the effect of robot embodiment
and behavior in the perception of emotions remain open.

Objective: The aim of this study is dual. First, it aims to assess the role of the robot’s cospeech gestures and embodiment in
the user’s perceived emotions in terms of valence (stimulus pleasantness), arousal (intensity of evoked emotion), and dominance
(degree of control exerted by the stimulus). Second, it aims to evaluate the robot’s accuracy in identifying positive, negative, and
neutral emotions displayed by interacting humans using 3 supervised machine learning algorithms: support vector machine,
random forest, and K-nearest neighbor.

Methods: Pepper robot was used to elicit the 3 emotions in humans using a set of 60 images retrieved from a standardized
database. In particular, 2 experimental conditions for emotion elicitation were performed with Pepper robot: with a static behavior
or with a robot that expresses coherent (COH) cospeech behavior. Furthermore, to evaluate the role of the robot embodiment,
the third elicitation was performed by asking the participant to interact with a PC, where a graphical interface showed the same
images. Each participant was requested to undergo only 1 of the 3 experimental conditions.

Results: A total of 60 participants were recruited for this study, 20 for each experimental condition for a total of 3600 interactions.
The results showed significant differences (P<.05) in valence, arousal, and dominance when stimulated with the Pepper robot
behaving COH with respect to the PC condition, thus underlying the importance of the robot’s nonverbal communication and
embodiment. A higher valence score was obtained for the elicitation of the robot (COH and robot with static behavior) with
respect to the PC. For emotion recognition, the K-nearest neighbor classifiers achieved the best accuracy results. In particular,
the COH modality achieved the highest level of accuracy (0.97) when compared with the static behavior and PC elicitations (0.88
and 0.94, respectively).
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Conclusions: The results suggest that the use of multimodal communication channels, such as cospeech and visual channels,
as in the COH modality, may improve the recognition accuracy of the user’s emotional state and can reinforce the perceived
emotion. Future studies should investigate the effect of age, culture, and cognitive profile on the emotion perception and recognition
going beyond the limitation of this work.

(JMIR Hum Factors 2024;11:e45494) doi: 10.2196/45494
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Introduction

Background
During the last decade, there has been increasing interest in
research on socially assistive robotics aimed at realizing
intelligent robotic solutions for health care and social assistance.
We experience an evolution of social robot applications; indeed,
they moved from the role of concierge and helper [1] toward
the role of companion and therapist [2,3]. Social robots have
the potential to contribute to the greater good of society; indeed,
it has been demonstrated that they can support everyday life as
companions and the health care system from logistics to
assistance and rehabilitation. Thinking to include social robots
in the care chain, they can be used to reduce stress, anxiety, and
pain in children [4]; they can be integrated into conventional
behavioral and cognitive therapies for both children and adults
who struggle with social anxiety [5]; or they can be used to
promote mental health [6]. A review by Hung et al [7] showed
evidence that Paro robots can reduce negative emotions in
patients, promoting a positive mood and improving social
engagement. Rossi et al [8] demonstrated that social robots are
effective in decreasing stress in children accessing the
emergency room. As the complexity of the robot task increases,
social robots are required to perform more complex perceptual,
cognitive, and interactive functionalities. This is the case in
long-term interactions in which robots and users should establish
meaningful communication, emotional awareness, and reliable
engagement.

In this context, the human-robot interaction (HRI) field has
become crucial, and it is now compelling to better understand
how humans perceive, interact with, or accept these machines
in social and real contexts. Researchers are also debating on
defining the factors that can influence the perceived social
capabilities and intelligence of a robot [9,10]. De Graaf et al
[11] highlighted the significance of the robot’s social capability,
emphasizing the importance of 2-way interaction where a robot
is expected to respond to humans in a social manner. In addition,
De Graaf et al [11] underlined that a social robot should also
display thoughts and feelings and should be socially aware of
the environment, among other issues. When a robot failed to
perform this 2-way interaction, people were disappointed and
experienced a sense of dissonance. In other words, when
interacting with a social robot, especially a humanoid robot, we
expect to use the same mental structure and social rules that
guide us in human-human communication, expecting empathetic
interaction because they are perceived as social actors [12].

From a roboticist or engineering point of view, these concepts
are translated into the design and development of behavioral

models that can guarantee an efficient and reliable 2-way
interaction [13,14]; they should perceive and show emotions
(and social norms) and thus be understood by humans with
whom they are interacting. The key challenge in this field is to
provide robots with cognitive and affective capabilities,
developing architectures that allow them to establish empathetic
relationships with users, which can foster long-term and
meaningful interactions. From an implementation perspective,
the design and the deployment of a socially capable social robot
comprises 2 essential parts. The first is devoted to designing
and implementing a consistent and congruent emotional
behavioral architecture that makes the robot react or act to the
environment (ie, display thoughts and feelings). The capabilities
of a user to understand the emotions displayed by a robot have
been explored in different settings [15,16]. Examples of actions
can include the expression of congruent cues such as facial
expressions [17], changes in the color of the eyes, movement
of the upper limbs [16,18], or smart navigation strategies [19].
In contrast, the other part is more focused on the robot’s
perception of the user’s emotional response to these behaviors
[20], with special attention to contextualizing its action and
reaction according to the living contexts and habits or
preferences of the person with whom it is interacting (ie, being
socially aware of the environment) [21].

Related Work on Emotion and Social Robots
The ability of a robot to perceive the nonverbal cues of the user,
which convey user emotion and intent, plays a key role in the
development of social robots capable of performing meaningful
interactions [22,23]. In this sense, humans’ gaze, body posture,
cospeech gestures, and facial expressions play a leading role in
defining the context of the interaction, helping the robot to
correctly classify the experience, and associating it with
informative content [21]. The development of such abilities,
for a researcher in the field of robotics, translates into the use
of multimodal sensor modality and the implementation of
several complex algorithms to endow robots with different
cognitive and social capabilities. The visual modality is the
most commonly used [24] because it can detect nonverbal
behaviors that are representative of the emotional state of users
without requiring them to wear any external sensor.
Alternatively, wearable sensors [25] can be used, also using a
multimodal approach, to overcome the problems related to
occlusion and low light. Other algorithms or modules were
implemented to perform multiperson tracking [26], speech
recognition [27,28], and automatic engagement detection [29].
A recent review paper [24] provides a deep insight into the most
used methods and approaches.
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For the showemotion part, robots must exploit several channels
(ie, auditory, visual, cospeech, and gestures) and mechanisms
(eg, body posture, facial expressions, vocal prosody, touch, and
gaze) to communicate their “internal emotional status” and
intentions authentically and clearly [30]. Thus, the capabilities
of a user to understand the emotions displayed by a robot have
been explored in several settings [31]. Over the last few years,
several attempts have been made using both video-simulated
robots and real robots. Guo et al [20] showed participants 5
different emotions using the humanoid robot called Alpha2,
and they were asked to rate the perceived emotion using the
Self-Assessment Manikin questionnaire (SAM; only valence
and arousal dimensions) [32]. In contrast, Barchard et al [33]
conducted a web-based study to evaluate the perception of a
robot’s social intelligence by showing videos of robot
interactions. However, the embodiment and the appearance of
social robots play important roles in the perception of the robot;
therefore, video-based elicitation could introduce some bias in
the analysis of perceived emotion. This is why other research
has relied on investigating the emotion perceived during a real
HRI. This is the case of Bagheri et al [34], who asked
participants to watch 6 performances of America’s Got Talent
Show on Pepper’s tablet that are expected to evoke the 6 basic
emotions. Rossi et al [35] and Staffa et al [36] relied on movie
trailers to evoke emotions. However, they used nonstandard
videos, making it challenging to identify the target emotion in
a recognized and standardized manner, as the elicited emotion
through the video clips is not known a priori, and consequently,
it is difficult to define the role of the robot (and its embodiment)
in the elicitation process.

Research groups have recently begun to study the effects of
multimodal channels on communication. Studies conducted
with embodied conversational agents showed that incongruent
emotional stimuli (eg, auditory and visual stimuli) can result in
adverse consequences on user rating; conversely, congruent
stimuli can facilitate the recognition of emotions [37]. Other
researchers have also studied the role of nonverbal behavioral
cues while interacting with robots. Movie clips showing coherent
and incoherent robot behaviors are often used to elicit emotional
responses from users with respect to those induced by movie
clips [15,16,18,35]. For instance, Rossi et al [16] investigated
how an incoherent nonverbal robot’s behavior with respect to
the presented emotion can produce a type of humorous effect.
Tsiourti et al [18] investigated how contextual incongruence
(ie, a robot’s reaction conflicts with the socioemotional context)
can confuse the observers, decreasing the accuracy of the
perceived emotion. Nevertheless, such a cospeech robot’s
behavior was used in addition to a nonstandard method of
emotion elicitation, as previously remarked; thus, it is not easy
to understand the role of the robot’s behavior with respect to
the emotional context. Therefore, it is important to understand
how the robot’s nonverbal behavior might shape the human
perception of the showed emotion elicited through standard
emotionally labeled visual data sets and, at the same time,
observe the robot’s emotion recognition accuracy rate. Although
previous studies have shown a correlation between the robot’s
nonverbal action and perceived emotion, there is a lack of use
of standard elicitation modalities.

Therefore, in this work, we present the results of 3 experimental
sessions to observe the performance of the robot in recognizing
users’ emotions as well as to investigate the difference (if any)
in eliciting emotions in humans when using a social robot (with
or without coherent behavior) rather than a PC. We plan to use
a standard data set of pictures, namely, the International
Affective Picture System (IAPS) [38], to elicit emotions in
users. Particularly, the robot will use a multimodal behavior (ie,
head movements, vocal reinforcement, and body gestures) to
interact with the participants while showing the graphical
emotions by establishing social binding, whereas the PC will
provide emotion elicitation only through a graphical interface.
The 2 graphical interfaces have been designed to provide the
same information to the user but using different communication
channels. In this context, the aim of this work is dual. First, it
aims to investigate the increase in the user’s emotional
perception during the interaction with a robot with respect to a
PC (Figure 1, blue arrow). In particular, this work investigates
the role of the robot’s coherent nonverbal behavior in emotion
perception by consequently assessing the impact of robot
embodiment and, eventually, its coherent behavior. Robot
nonverbal cues are manipulated with respect to a mapping
between the main associated emotion and cospeech gestures
that can be generated on the robot. At the end of each
interaction, the participants were asked to self-assess their
perceived emotions. In this study, we used the emotion
classification proposed by Russel et al [39], which relies on 3
variables, namely, valence, arousal, and dominance. Valence
describes the degree to which a stimulus causes a positive or
negative emotion, arousal refers to the intensity or level of
energy invested in the emotion, and dominance reflects the
extent of perceived control over the emotional response when
facing the stimulus. The collected answers were analyzed to
answer the following research questions (RQs):

1. RQ1: Emotion elicited through a humanoid robot interacting
with coherent emotional behavior is rated higher than
emotions elicited by a web application in terms of emotional
valence, arousal, and dominance.

2. RQ2: There are significant differences in terms of emotional
valence, arousal, and dominance between a robot showing
coherent behavior rather than a robot that it is not moving
at all (static condition).

3. RQ3: The embodiment of the humanoid robot will not affect
the emotion perception compared with the web application.

Second, this study aims to assess the accuracy of the robot in
recognizing the elicited emotion in the participants (Figure 1,
yellow arrow). The ability to infer and interpret emotions plays
a key role in establishing intuitive and engaging HRIs. On the
one hand, a robot endowed with emotion recognition skills can
adapt its behavior based on the detected user emotion [22]. On
the other hand, a robot expressing recognizable emotions
positively influences the evaluation of its capabilities [40]. In
particular, features related to facial expressions were extracted,
preprocessed, and analyzed with 3 supervised machine learning
techniques to verify the following RQ:

1. RQ4—There is no difference in the robot emotion
recognition accuracy despite the elicitation modalities (robot
or web application).
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Figure 1. Two-way interaction proposed in this study. To improve the human-robot interaction, the robot should perceive the user’s behavior (yellow
arrow) and plan appropriate action (blue arrow).

In our previous studies [41,42], we evaluated the perceived
acceptance and the recognition rate of having a robot that acts
coherently and incoherently despite the standard emotion
showed with respect to the standard elicitation modality. In
contrast, in this study, we focus only on coherent behavior by
comparing it with a standard web application that runs on a PC.
In addition, instead of focusing on evaluating how the robot’s
acceptance is modulated according to the elicitation modality,
we focused on the perceived emotion evoked.

Methods

Instrumentation
The instrumentation is composed of the following elements:
(1) a Pepper robot (Aldebaran, United Robotics Group) or a
PC, (2) the RoboMate (Behaviour Labs) interface for cospeech
gestures, (3) a custom interface that contains pictures from the
IAPS for eliciting emotion, and (4) an external camera placed
on Pepper to record the participants’ emotions during the
interaction. Pepper is a humanoid robot that is widely used for
experimentation in socially assistive robotics. It is 120 cm tall,
weighs 28 kg, and has 20 df, including 1 head, 2 arms, and 1
wheeled base. In addition, it has a tablet on the front. Robot
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coherent behavior was managed through the RoboMate interface
[43] to animate Pepper, when necessary, selecting among the
behaviors classified as “positive social stimulus” or “negative
social stimulus.” The selected stimulus was modeled by a
psychologist using 3 modalities: body gestures (upper limb and
head), gaze, and sound. IAPS is a database of images devoted
to eliciting standardized emotions [44]. It was developed by the
Center for Emotion and Attention at the University of Florida.
This database is commonly used in psychological studies on
emotions and attention. Each image in the data set is labeled
with the corresponding emotion, thus enabling researchers to
properly select the stimulus. In this study, 60 images were
selected from the team of psychologists of the hospital “Casa
Sollievo della Sofferenza.” According to the IAPS valence
dimension, 21 of the selected images were rated as positive, 19
as negative, and 20 as neutral. A customized web-based interface
was developed to standardize the emotional stimulation when
using 2 different communication channels (a robot and a PC).

Experimental Setup
A psychologist welcomed the participant, briefly explaining the
experimental setup, including how to use the evaluation tool.
It is important to emphasize that the participant was not aware
of the real objective of the experimentation, thus avoiding

interference with the experience. To properly investigate the
RQs, each participant underwent 1 of the following elicitation
modalities.

1. Static (STA) behavior: Pepper robot has its arms along the
body in a neutral position (Figure 2A). Pepper’s face was
looking at the participant but without any animacy. Pepper
displayed IAPS images on its tablet through the customized
web application.

2. Coherent (COH) behavior: Similar to the STA condition,
the IAPS images were shown on Pepper’s tablet. Using the
RoboMate application, the psychologist assigned a coherent
behavior to Pepper with the shown images. In particular,
the psychologist can choose and combine 3 modalities for
elicited emotions: body gesture (upper limb and head), gaze,
and sound, which are available on the RoboMate application
(Figure 2B). For example, in the case of positive emotion,
Pepper’s gestures were chosen to look friendly; it should
look to the user direction, and the voice gave positive
reinforcements.

3. PC: For this experimental condition, we used a PC instead
of the Pepper robot. Participants were asked to evaluate the
images shown on a PC through the customized web
application.

Figure 2. Experimental setup. The participants were interacting with Pepper robot during the experimentation. (A) Participants were asked to sit in
front of the robot and watch the images on its tablet. (B) If the participant belonged to the coherent elicitation modality group, the Pepper robot would
move its arms, eyes, and head.

The participant was asked to sit in front of the technology (ie,
Pepper robot or PC). If the user interacts with Pepper, Pepper
is placed 0.5 to 0.6 m far from the user (ie, personal distances
[45]); in the case of interaction with the PC, the user is requested
to sit and interact with the computer as he or she will commonly
do.

Each stimulus was shown for 7 seconds, and at the end, the
participant was asked to fill out the SAM [32], as adapted in
the study by Gatti et al [46] directly on the robot or on the
computer after each picture. SAM is an emotion assessment
tool that uses graphic scales, depicting cartoon characters
expressing 3 emotional elements (valence, arousal, and
dominance). Each participant was asked to rate the domains by

selecting an image that corresponded to a score between 1 and
9. A picture of the interface is presented in Multimedia
Appendix 1.

At the end of the experimental session, each participant
completed 60 SAM questionnaires. The psychologist was
present during the test, and she or he was ready to intervene in
case of necessity. All the tests were performed at the “Casa
Sollievo della Sofferenza” research hospital.

Ethical Considerations
The approval of the study for experiments using human
participants was obtained from the local Ethics Committee on
Human Experimentation (register code 3038/01DG). All
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participants signed an informed consent form before
participating in this study, and pictured participants provided
written informed consent to allow their image to be published.
The data were pseudoanonymized and stored on a
GDPR-compliant server.

Participants
Participants were recruited from July 2020 to February 2021
from employees and staff of the “Casa Sollievo della
Sofferenza” research hospital located in Apulia (San Giovanni
Rotondo, Foggia) using convenience sampling. Participants
were excluded if they had a hearing or visual impairment.
Recruited participants were then randomly assigned to undergo
1 of the 3 experimental conditions (ie, STA, COH, and PC).
Sociodemographic information (age, education, and sex) was
collected to verify the similarities between the groups.

Data Analysis

Overview
Owing to the sample size of each cohort, the nonparametric
statistic was used, particularly the Kruskal-Wallis test and
chi-square test, to investigate significant differences between
participants’ groups in terms of age, sex, and educational level.
The significance level was set at P=.05. The following
paragraphs describe the analysis performed on the SAM
questionnaires and the data collected from camera sensors.

Emotion Perception Analysis
A total of 60 SAM questionnaires were collected for each
participant. The average values of the valence, arousal, and
dominance domains were computed for each selected image of
each group of elicitation modality (ie, STA, COH, and PC).
Differences were analyzed with the Kruskal-Wallis test (P<.05)
and post hoc evaluated with the Mann-Whitney U test (with
Bonferroni correction) used to identify between which pair of
elicitation modes the difference has occurred.

Emotion Recognition Analysis
Data from the camera were processed and examined offline.
The recordings were initially analyzed [47] to ensure that only
the frames featuring the face of the person performing the test
were included in the study. Then the recordings were segmented,
providing short videos that corresponded to the user’s reaction
to each image proposed, totaling 60 videos per user. The
OpenFace toolkit [48] was used to extract 150 features related
to gaze and facial expression from each video as well as the
quality (ie, confidence) of the extracted features. The data were
filtered according to the confidence score (frames with a
confidence score <0.90 were discarded). The data were then
labeled based on the IAPS-defined emotions (ie, positive,
negative, and neutral). Data were normalized and selected. Only
features with a correlation coefficient of <0.85 were picked

from the initial data set, avoiding those with a high correlation
coefficient (which may represent redundant information). The
data of the merged data set were then separated into sub–data
sets (one for each participant), and emotion classification was
performed using the selected features. In this study, we rely on
state-of-the-art methods used for emotion recognition [24] to
facilitate a comparison with other works. The 3 supervised
classifiers used are support vector machine (SVM), random
forest (RF), and K-nearest neighbor (KNN). To classify the data
by participant, a 10-fold cross-validation procedure was applied,
and the outputs were organized in a confusion matrix. The
classification performance was assessed in terms of accuracy,
precision, recall, and F-measure [49]. The calculations were
computed using MATLAB 2020a. More details on emotion
recognition analysis are available in Multimedia Appendix 2
[24,47-49].

Results

Description of the Participant Cohort
A total of 60 participants were involved in this study, 20 for
each modality, resulting in 3600 interactions with technologies.
In total, 3 participants were excluded from the analysis of
perceived emotion because not all SAM evaluations were
correctly saved after each elicitation. In case of missing SAM
values, these ratings were removed from the analysis of average
values. Finally, 57 participants were included in these subgroups
of analyses linked to RQ1, RQ2, and RQ3. Regarding the
recognition of emotion using machine learning techniques
(linked to RQ4), a total of 53 participants were included in the
analysis. A total of 7 participants were excluded because of
technical problems related to the quality of the recorded images.
The statistical tests did not indicate any difference between the
3 participant cohorts regarding age, sex, and educational level.
The participant demographics and educational analyses are
reported in Multimedia Appendix 3.

Participants’ Perceived Emotion Results
The results underline significant differences (P<.001) in the
perceived emotions according to the different elicitation
modalities, except for the arousal elicited with the positive
images (Figure 3). The median and IQR values are fully reported
in Multimedia Appendix 4. As for valence, the robot with
coherent behavior elicited significant differences (P<.001) and
higher values in terms of valence, arousal, and dominance
domains compared with the other 2 modalities for negative and
neutral emotions. In terms of negative valence, the participants
perceived fewer negative emotions with the coherent robot than
with the other 2 modalities. For positive valence, elicitation
with the web application is significantly different from that with
the robot (P<.001).
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Figure 3. Self-Assessment Manikin Questionnaire results for the 3 elicitation modalities. Boxplot matrix (A), (B), and (C) denote valence, arousal,
and dominance for the positive elicitation, respectively; (D), (E), and (F) denote valence, arousal, and dominance for the negative elicitation, respectively;
(G), (H), and (I) denote valence, arousal, and dominance for the neutral elicitation, respectively; asterisks on boxplot remark the significant differences
evaluated with the Mann-Whitney post hoc test corrected with Bonferroni. COH: coherent; STA: static.

Regarding arousal, the coherent robot was rated higher than the
other 2 modalities, but there were significant differences
(P<.001) only for negative and neutral emotions, whereas for
positive arousal, the results, depicted in Figure 3, highlight only
a trend. All the P values are reported in Multimedia Appendix
4.

The participants stimulated using the robot rated significantly
higher dominance across all 3 emotions rather than the cohort
that used the PC in the test. As for positive elicitation, we found
significant differences (P<.001) between the cohort stimulated
with the PC and those stimulated with the robot (ie, static
behavior and coherent behavior). Indeed, the participants rated
the emotions (in terms of valence and arousal) elicited by the
robot more than the ones elicited using the PC. All P values are
reported in Multimedia Appendix 4.

Robot’s Emotion Recognition Results
Because of technical issues 1848 frames pertaining to the PC
modality were removed from the analysis during the

preprocessing. At the end, the total number of samples included
in this study was 296,677 for the STA modality, 228,170 for
the COH modality, and 103,758 for the PC modality. The
number of columns in each data set corresponded to the number
of features selected using the correlation analysis method. The
following features were selected (Figure 4):

1. The x-, y-, and z-coordinates of the eye gaze direction
vector for eye 0 (3 features).

2. The z-coordinate of the eye gaze direction vector for eye 1
(1 feature).

3. The x- and y-coordinates of the location of the landmark 8
(the leftmost in the image) of the eye 0 (2 features).

The 53 data sets were fed into 3 classifiers (SVM, RF, and
KNN) [24]. The data sets were uniformly distributed across the
3 groups, as presented in Table 1.
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Figure 4. Selected features. (A) Face and (B) eye landmarks extracted with OpenFace software. The landmark 8 in panel B was chosen after the feature
selection.

Table 1. Distribution of data set instances.

Neutral, n (%)Negative, n (%)Positive, n (%)Group

98,499 (33.2)94,257 (31.77)103,992 (35.03)Static (n=296,677)

83,077 (36.41)74,383 (32.6)70,710 (30.99)Coherent (n=228,170)

36,492 (35.17)32,072 (30.91)35,195 (33.92)PC (n=103,758)

Accuracy, precision, F-measure, and recall were calculated as
the mean values from the participants in the same experimental
cohort. According to the findings, the KNN classifier offers the
best classification results, with an accuracy of up to 0.88 for
STA behavior, 0.97 for COH, and 0.94 for PC. The SVM
classifiers, in contrast, had the lowest results (accuracy of up
to 0.57, 0.67, and 0.68 for STA, COH, and PC, respectively);
hence, they were excluded from further research. Compared

with the RF classifier, the KNN classifier has the best F-measure
(>0.88).

Table 2 presents the complete results for the KNN and RF
classifiers, including the accuracy, F-measure, precision, and
recall for each group. According to the overall trend, the COH
modality achieves a high level of accuracy when compared with
the STA and PC elicitations. In terms of the other indicators,
the COH was better with the KNN classifier and slightly worse
with the RF classifier when it came to elicitation with the PC.

Table 2. Performance of K-nearest neighbor (KNN) and random forest (RF) classifiersa.

RecallF-measurePrecisionAccuracyGroup

RFKNNRFKNNRFKNNRFKNN

0.650.880.650.880.650.880.650.88Static

0.720.960.720.960.720.960.730.97Coherent

0.740.940.740.940.740.940.740.94PC

aMean values are used to calculate the results.

Confusion matrices (Figure 5) for the 3 elicitation modalities
were generated to investigate the performance of the classifiers
in recognizing the 3 selected emotions. The positive emotion
was often better identified, whereas the negative emotion was
the least recognized. When the user is stimulated with the robot

with coherent modality and the PC, the RF classifier performs
better than the KNN classifiers in distinguishing emotions. The
KNN classifier appeared to perform better in the static modality
than in the other 2.
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Figure 5. Confusion matrices for K-nearest neighbor (KNN) and random forest (RF) classifiers. The confusion matrices obtained for the 3 elicitation
modalities (ie, static, coherent, PC) are reported considering only the KNN and the RF classifiers.

Discussion

Principal Findings
The results confirm RQ1 (“A humanoid robot interacting with
coherent emotional behavior is rated higher in terms of
emotional valence, arousal, and dominance compared to the
web application”) because the COH robot is rated significantly
higher for all SAM dimensions (except positive arousal) with
respect to the PC condition (Figure 3). However, it is worth
noting that when speaking of negative elicitation, receiving a
higher rating of valence means that the stimulus with the COH
condition was perceived less negatively than the ones elicited
with the others. RQ2 (“There are significant differences in terms
of emotional valence, arousal, and dominance between the static
robot compared to the robot that shows movement”) is
confirmed for the 3 dimensions for negative and neutral
emotions (Figure 3). It is worth noting that these results confirm

that the robot’s movements cause the negative emotion to be
perceived as less negative (STA valence median value=3.32;
COH valence median value=5.13). As for the positive emotion,
there were no significant differences, which could suggest that
the robot’s behavior per se did not affect the perception of the
positive emotion.

The presented results did not confirm the RQ3 (“The
embodiment of humanoid robot will not affect the emotion
perception compared to the web application”) for all elicited
emotion and SAM constructs. Indeed, there were no significant
differences between the STA and the PC elicitation for valence
and arousal measured during negative and neutral elicitation
(Figure 3). Conversely, COH and STA differed significantly
from PC in terms of positive elicitation. These results suggest
that robot embodiment per se has a role in the perception of
dominance associated with negative and neutral emotions with
respect to a standard web interface. On the contrary, as for the
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positive emotion, embodiment seems to play a key role because
both COH and STA elicitations differ from the web application
in terms of valence and dominance.

The ability to recognize user emotions is a fundamental step in
the development of socially aware robots (RQ4). The emotions
were recognized with an average accuracy >0.88 over the 3
elicitation conditions. In addition, the amount of gaze also
depends on the interpersonal dynamics between the partner and
their personalities and on the intent of using gaze to
communicate their internal state. Therefore, it is important to
measure it during interactions. As shown in Table 2, the
accuracy of COH stimulation was higher than that of the other
2 methods. In addition, the results in the confusion matrices
were aligned with the perceived emotion (Figure 5). According
to the SAM results, the valence ratings for positive elicitation
elicited with PC were significantly different from the other 2
with lower median values. This trend is reflected in the
confusion matrices obtained using RF classifiers.

Comparison With Prior Work
Previous qualitative studies have pointed out how incoherent
behavior can generate hilarious reactions in humans [16]. The
presented results suggest that we can observe something similar,
even if the stimulus is coherent. It appears that the robot’s
behavior somewhat distracts from perceiving negative emotions,
even if the behavior is aligned with the shown emotion. In
addition, as confirmation, positive emotion was perceived
significantly more positively than the PC modality, suggesting
that robot movements make the robot more positive.
Consequently, these results suggest that it is important to tailor
the reaction of the robot appropriately to elicit a specific
emotion. Indeed, if we need to stimulate—for a certain
reason—negatively the users, we need to reduce the robot’s
body expression because they can decrease the perception of
negative emotions. Alternatively, if we need to provide positive
feedback to users, the combined actions of both verbal and
nonverbal communication can be used.

A previous study [36] compared robots and web applications
that focused on investigating preferences and acceptance, and
they did not find any significant deviation in the quantitative
results. In contrast, in this study, we focus on human emotion
perception, and this perception seems to be influenced or biased
by the emotion itself and the robot’s movement. This finding
highlights the significance of not just robot embodiment but
also its cospeech gestures in designing social agents, particularly
when evaluating all dimensions of emotions. Methodologically,
the presented findings carry significant implications for the
design of experimental protocols. Evaluating HRI cannot rely
solely on videos, as they overlook the importance of physical
interaction. In the literature, some papers [33] provide a user
impression without direct interaction with a robot; the collected
results can be biased because the participant missed the
contribution in the perception related to embodiment. Take, for
instance, the scenario where you are testing a new game
application or software on a tablet meant for eventual integration
into a robot. Particularly when assessing emotions, it's crucial
to approach the generalization of results with caution. In this
sense, the result could be altered because the emotions elicited

could not be directly applicable when interacting with an
embodied agent.

The results obtained for the STA robots with the KNN and RF
classifiers were slightly improved with respect to the results
obtained in our previous work [42] (average accuracy was equal
to 0.85 with KNN and 0.98 with RF), where we used them in
combination with encoders. It is also worth noting that after the
feature selection process, only the features related to gaze were
retained in the analysis. Gaze is extremely important in
managing interpersonal interaction and also during human-robot
conversation; indeed, it can be correlated with user engagement
during conversation or mutual tasks [50,51].

Limitations of the Study
The limitations of this study were mainly related to the cohort
of recruited participants. First, both cognitive and cultural
backgrounds are factors that can influence the perception of
emotions [52]. Some neurological pathologies (eg, Parkinson
disease) can affect facial expressions, whereas others can affect
body gestures and language (eg, autism spectrum disorders and
apathy); consequently, emotion recognition accuracy in such
cases can change. The RQs do not focus on investigating their
role in emotion perception; consequently, we recruited cohorts
of people comparable for cultural background and cognitive
status to limit the impact of these factors. The second limitation
of this study refers to how the emotion is evaluated; in this
study, we evaluated each SAM dimension separately. The third
limitation of this study relies on the supervised machine learning
techniques used. In this study, we rely on standard supervised
methods because our main RQs are not focused on learning
methods; therefore, we apply the most used techniques.

Future Directions
In this context, by applying the findings and implications of
this paper in the health care context, we can conclude that it is
important to tailor the reaction of the robot properly; indeed, if
we need to stimulate—for a certain clinical reason—the users
negatively, we need to reduce the robot’s body expression
because they can decrease the perception of negative emotions.
Alternatively, if we need to give positive feedback to the users,
for instance, during an exercise, we can use the combined action
of both verbal and nonverbal communication. To overcome the
limitations of this study, future research can be planned to extend
the study to include a different group of participants with some
cognitive and physical disorders and different cultural
backgrounds to evaluate the effect of these factors on emotion
perceptions. Future studies should also investigate whether there
are differences in combining valence-arousal domains, as
proposed in other studies [16,53]. Finally, the data could be
analyzed using also deep learning and reinforcement learning
techniques.

Conclusions
This study aimed to investigate the role of robot embodiment
and its behavior in emotion perception and recognition using a
standard elicitation model. In total, 4 RQs were investigated to
understand how the robot’s nonverbal behavior might shape the
human perception of the showed emotion elicited through a
standard data set and, at the same time, to observe the robot’s
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emotion recognition accuracy rate. This study presents an
experimental setup in which 60 participants were asked to
interact with 2 embodied agents (ie, a robot or tablet) that acted
as emotion facilitators by showing them 60 standard pictures.
The results underline the good recognition accuracy of the
perception modules of the robot. Indeed, we can correctly

classify the valence of the emotion (ie, positive, neutral, and
negative) with an accuracy of up to 0.97 in the best case.
According to the results, robot embodiment affects the
perception of dominance significantly compared with web
applications, which means that participants’emotions were less
controlled when they were interacting with an embodied agent.
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