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Abstract

Background: Hypoglycemia threatens cognitive function and driving safety. Previous research investigated in-vehicle voice
assistants as hypoglycemia warnings. However, they could startle drivers. To address this, we combine voice warnings with
ambient LEDs.

Objective: The study assesses the effect of in-vehicle multimodal warning on emotional reaction and technology acceptance
among drivers with type 1 diabetes.

Methods: Two studies were conducted, one in simulated driving and the other in real-world driving. A quasi-experimental
design included 2 independent variables (blood glucose phase and warning modality) and 1 main dependent variable (emotional
reaction). Blood glucose was manipulated via intravenous catheters, and warning modality was manipulated by combining a
tablet voice warning app and LEDs. Emotional reaction was measured physiologically via skin conductance response and
subjectively with the Affective Slider and tested with a mixed-effect linear model. Secondary outcomes included self-reported
technology acceptance. Participants were recruited from Bern University Hospital, Switzerland.

Results: The simulated and real-world driving studies involved 9 and 10 participants with type 1 diabetes, respectively. Both
studies showed significant results in self-reported emotional reactions (P<.001). In simulated driving, neither warning modality
nor blood glucose phase significantly affected self-reported arousal, but in real-world driving, both did (F2,68=4.3; P<.05 and
F2,76=4.1; P=.03). Warning modality affected self-reported valence in simulated driving (F2,68=3.9; P<.05), while blood glucose
phase affected it in real-world driving (F2,76=9.3; P<.001). Skin conductance response did not yield significant results neither in
the simulated driving study (modality: F2,68=2.46; P=.09, blood glucose phase: F2,68=0.3; P=.74), nor in the real-world driving
study (modality: F2,76=0.8; P=.47, blood glucose phase: F2,76=0.7; P=.5). In both simulated and real-world driving studies, the
voice+LED warning modality was the most effective (simulated: mean 3.38, SD 1.06 and real-world: mean 3.5, SD 0.71) and
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urgent (simulated: mean 3.12, SD 0.64 and real-world: mean 3.6, SD 0.52). Annoyance varied across settings. The standard
warning modality was the least effective (simulated: mean 2.25, SD 1.16 and real-world: mean 3.3, SD 1.06) and urgent (simulated:
mean 1.88, SD 1.55 and real-world: mean 2.6, SD 1.26) and the most annoying (simulated: mean 2.25, SD 1.16 and real-world:
mean 1.7, SD 0.95). In terms of preference, the voice warning modality outperformed the standard warning modality. In simulated
driving, the voice+LED warning modality (mean rank 1.5, SD rank 0.82) was preferred over the voice (mean rank 2.2, SD rank
0.6) and standard (mean rank 2.4, SD rank 0.81) warning modalities, while in real-world driving, the voice+LED and voice
warning modalities were equally preferred (mean rank 1.8, SD rank 0.79) to the standard warning modality (mean rank 2.4, SD
rank 0.84).

Conclusions: Despite the mixed results, this paper highlights the potential of implementing voice assistant–based health warnings
in cars and advocates for multimodal alerts to enhance hypoglycemia management while driving.

Trial Registration: ClinicalTrials.gov NCT05183191; https://classic.clinicaltrials.gov/ct2/show/NCT05183191, ClinicalTrials.gov
NCT05308095; https://classic.clinicaltrials.gov/ct2/show/NCT05308095

(JMIR Hum Factors 2024;11:e46967) doi: 10.2196/46967
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Introduction

Overview
Around 9 million adults worldwide experience type 1 diabetes
mellitus (T1DM) [1]. One of the most relevant acute
complications associated with T1DM is hypoglycemia (ie, low
blood glucose). This condition is associated with impaired
cognitive, executive, and psychomotor function [2-4] and is
linked to driving mishaps [5-7].

Previous work introduced the development of a voice warning
for hypoglycemia while behind the wheel, whereas the voice
assistant (VA) would work as a warning interface [8]. The
hypoglycemia warning was intended as an app compatible with
the VA that is already available in the car and that would allow
delivering an alert in a hands-free manner. The study reported
on the iterative development and evaluation of an in-vehicle
hypoglycemia voice warning. It demonstrated that it is deemed
useful and effective by drivers with T1DM, especially if the
warning is kept simple and direct (ie, avoiding initiating a
conversation with the driver). However, the paper did not
investigate the effect of proactive behavior in the VA in such a
context. Proactivity in VAs can cause a startling reaction, which
is prone to annoyance [9] and driving impairments [10-12].

Ambient lighting can communicate with drivers without
distracting them from their main task [13] or eliciting a strong
emotional response [14]. This interface has been investigated
as an indicator of several driving-relevant events, such as
obstacle warnings or vehicle-state communication [15].
However, to the best of our knowledge, in-vehicle ambient
lighting through LEDs has never been investigated as an
indicator of a critical health state.

Our previous work [8] tested the concept of an in-vehicle voice
warning delivered by the VA with healthy participants and then
with individuals with T1DM, both in a driving simulator and a
real car. The concept was developed following an iterative
approach, and study participants provided feedback that we
used to enhance the voice warning and test it on new
participants. Thus, our previous work focused on technology

acceptance and on improving it through user feedback. However,
the voice warning was not evaluated against a standard warning
(ie, beep with text), which could be used as a benchmark.
Moreover, our previous work did not focus on the emotional
reaction generated by getting a warning while driving.
Therefore, this work investigates the effect of LEDs (ie, a
possible solution to alleviate emotional reaction) and is to be
understood as a continuation of our previous work. To foster
experimental control and external validity, the same procedure
is replicated in a simulated driving setting (ie, a computer
simulator) and a real-world driving setting (ie, a car in a closed
circuit).

Background

Hypoglycemia Warnings
Hypoglycemia is a common complication of diabetes. The
monitoring of blood glucose is essential to prevent
hypoglycemia. Intermittent self-monitoring of blood glucose,
flash glucose monitoring, and continuous glucose monitoring
are commonly used methods. However, these methods are not
adapted to the in-vehicle context, as they require the driver to
visually attend to a handheld mobile device displaying the
current blood glucose value. This behavior is known to impair
driving performance [16], thus leading to dangerous situations
while driving.

Tentative hands-free solutions have been proposed to address
this issue in academia [17] and in the community of individuals
with T1DM [18]. Specifically, prior research [17] suggested
using vehicles as a platform to display blood glucose data on
infotainment screens. Moreover, a digital community [18]
created an open-source program to show their continuous
glucose monitoring data on infotainment screens. However,
these solutions are limited to visual information display, thus
failing to be ergonomically suitable for the in-vehicle context
while driving. Therefore, solutions must be developed, which
can provide hypoglycemia warnings while driving. One
approach is to use voice-first warnings (ie, delivered by the
built-in in-vehicle VA), where the driver can be informed of
the issue without having to attend to a display.
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In-Vehicle Warnings
In-vehicle health-state warning systems are a part of advanced
driver–assistance systems [19]. From a human-computer
interaction perspective, in-vehicle warnings should be effective
and communicate urgency without being annoying [20].
Currently, in-vehicle warnings vary from classic car warnings,
visually presented on the dashboard with traffic-light colors and
unspecific tones, to advanced driver–assistance system warnings
that use visual, auditory, and haptic modalities [21]. Even though
the visual signal should be redundant to the auditory and haptic
signals, some driver-state warnings, such as the driver attention
alert, are predominantly visual (eg, mug symbol with an
indicative text such as “Time for a break”).

To decrease the demand for drivers’ visual attention, it is
necessary to develop attention-attractive warnings without
relying on visual displays as the main source of information.
One approach would be to use the in-vehicle VA already built
into the car to warn or alert drivers for critical situations, such
as hypoglycemia (or drowsiness). This approach could ensure
warnings’ effectiveness while reducing drivers’ visual
distraction.

In-Vehicle VAs
VAs are increasingly being integrated into cars [22-24], allowing
digital health interventions to be delivered via such an interface
in a scalable way. In the in-vehicle context, VAs have ergonomic
and experiential advantages: they reduce visual distraction
compared to other infotainment technologies [25], foster a
natural interaction [26], create a sense of social presence [27],
and increase engagement [28]. Ultimately, VAs can create a
sense of being in the presence of a copilot [29]. Therefore,
in-vehicle VAs have great potential for delivering real-time and
effective hypoglycemia warnings to drivers while driving.

Proactive VAs and the Risk of Startle
Proactivity is not part of the current common mental model of
a VA. However, it does not necessarily affect driving
performance [30] and is well-accepted by drivers [31,32].
Nevertheless, a sudden auditory stimulus can create a startling
reaction, which could interfere with driving performance
[10,33]. Hence, when it comes to critical situations such as
hypoglycemia [34], it is important to develop warnings that
gradually prepare the driver to be receptive to them. Ambient
lighting can be used to gradually prepare the driver and add
information without consequentially distracting the driver [13].
This technology has been previously investigated for in-vehicle
driving behavior support such as collision and blind warnings,
lane change decision support, and speed and attention direction
recommendations [15]. In addition, it has been investigated to
inform the driver about the vehicle’s decision-making in
autonomous cars [35].

Objectives
To this end, a hypoglycemia warning delivered by a mock-up
of a built-in in-vehicle VA is designed and tested with
individuals with T1DM and compared to a standard format of
in-car warning (ie, unspecific alert tone with visual information)
regarding driver experience.

Specifically, this work aims (1) to design a hands-free
multimodal health intervention for hypoglycemia (ie, warning)
compatible with the in-vehicle context and (2) to investigate
the effect of warning modality (visual, vocal, and vocal with
ambient lighting) on the emotional reaction and the acceptance
of such technology.

Methods

Overview
Two studies were carried out, a simulated driving study and a
real-world driving study. Across these studies, participant
recruitment, study design, material and apparatus, procedure,
and data analysis were the same. The difference lied in the
setting. For this reason, all the following subsections, except
for Setting, are described only once.

Participants

Sampling, Inclusion Criteria, and Compensation
Patients diagnosed with T1DM attending the diabetes outpatient
clinic of the Bern University Hospital were recruited. A
physician (VFL) of the study team performed recruitment during
regular outpatient visits with a face-to-face assessment. For the
simulated driving study, participants were recruited between
November 2021 and March 2022. For the real-world driving
study, participants were recruited between April and June 2022.
Inclusion criteria were age between 21 and 60 years, hemoglobin
A1c≤9% (ie, a blood test indicating how well the patient’s
diabetes is being controlled), functional insulin treatment (with
insulin pump therapy or multiple daily injections) for at least 3
months with good knowledge of insulin self-management,
possession of a Swiss driver’s license at least 3 years before
study inclusion, and have driven at least once in the last 6
months. Each participant received an expense allowance of US
$209.62 to cover general expenses caused by study participation
(eg, transport).

Experience and Beliefs Questionnaires
Upon inclusion in the study, participants were asked to report
the frequency of driving per week, their previous use of
in-vehicle VAs, and their technology affinity. Technology
affinity was assessed with the 16-item Technology Readiness
Index [36]. This scale measures constructs susceptible to
influencing the adoption of cutting-edge technology, such as
optimism, innovativeness, discomfort, and insecurity.

Study Design
The study was designed as quasi-experimental with 2
independent variables, that is, blood glucose phase and warning
modality, and 1 main dependent variable, that is, emotional
reaction. The blood glucose variable had 3 levels, that is,
euglycemia, decreasing, and hypoglycemia (see the Procedure
section). The warning modality variable had 3 levels as well,
that is, standard, voice, and voice+LED (see the Warning
section). The blood glucose phase was varied in a
nonrandomized fashion (see the Procedure section), while the
warning modality was pseudorandomized, and each modality
was crossed with each blood glucose phase. Secondary outcomes
included self-reported user experience measures, such as
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warning acceptance, perceived urgency, alerting effectiveness,
annoyance, and preference.

Material and Apparatus

Overview
In this section, the operationalization of the design variables is
described. An overview is listed in Table 1.

Table 1. Study design variables.

Levels or valuesToolVariable

Normal, decreasing, and hypoglycemiaControlled hypoglycemia protocol [37]Blood glucosea

Standard, voice, and voice+LEDHypoglycemia warning app [38]Warning modalitya

Skin conductance responseEmpatica E4Emotional reaction (objective)b

Score (0-100)Affective Slider [39]Emotional reaction (subjective)b

Score (1=very urgent and 5=very insignificant)Baldwin and Moore scale [20]Warning perceived urgencyb

Score (1=effective and 5=ineffective)Baldwin and Moore scale [20]Warning alerting effectivenessb

Score (1=I dislike it very much and 5=I like it very much)Baldwin and Moore scale [20]Warning annoyanceb

Score (–2=negative extreme and +2=positive extreme)Van Der Laan Acceptance Scale [40]Warning acceptanceb

Rank (1=best and 3=worst)Arbitrary 3-point scaleWarning preferenceb

aManipulation.
bMeasure.

Blood Glucose
Blood glucose was manipulated by inserting 2 intravenous
catheters: one for blood glucose measurement with an interval
of 5-10 minutes and the other for the infusion of a combination
of insulin and glucose, according to the patient’s current blood
glucose and the experimental target blood glucose range.
Euglycemia (ie, normal blood glucose) was defined as a
concentration of 5-8 mmol/L; decreasing blood glucose was
identified when blood glucose was below the euglycemia range
(5-8 mmol/L) and progressing toward a target hypoglycemic
range (3-3.5 mmol/L); and hypoglycemia was defined as a
concentration of 3-3.5 mmol/L. For more technical details, refer
to related research [37].

Warning
The Hypoglycemia warning app operationalized into a tablet
(model SM-T590, Samsung) simulated the infotainment
system’s touchscreen, and LED strips (RGB Light Strip Pro,
Cololight) simulated the interior ambient lighting. The warning
system was controlled through the Wizard of Oz method [41],
that is, the system was controlled by the experimenter behind
the scene and acting as if it was fully automated.

The LED strips had 60 LEDs per meter and could be remotely
controlled with the Cololight app (Klaus Stephan GmbH). The

tablet was used to run the Hypoglycemia warning app (publicly
available on GitHub [38]), remotely controlled via a remote
desktop app (AnyDesk, AnyDesk Software GmbH).

The warning system had 4 possible states: a default state and 3
intervention modalities (standard, voice, and voice+LED). The
default state involved the LED strip being turned on in blue and
the tablet showing a fake navigation menu (Figure 1A). The
standard modality displayed a yellow warning sign with an
informative text and was accompanied by an earcon. The text
said “Risk of hypoglycemia. Please pull over and verify blood
sugar.” The LED strips remained blue (Figure 1B). The voice
modality displayed a VA animation accompanied by a
prerecorded synthesized female voice (de-DE-Wavenet-C with
speed=0.85 and pitch=–3.20, Google Inc). The voice said “I
have detected a risk of hypoglycemia. Please pull over safely
and verify your blood sugar” (translation from the German
formulation “Ich habe eine Hypogefahr erkannt. Bitte sicher
anhalten und deinen Blutzucker überprüfen”). The voice
warning was designed based on the results reported in our
previous work [8]. Once again, the LED strips remained blue
(Figure 1C). The voice+LED modality displayed the same VA
animation and prerecorded synthesized female voice but, before
the onset of the voice warning, the LED strips turned red (Figure
1D).
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Figure 1. Illustration of the warning app and modalities. (A) The default state was shown during the drive and simulated the infotainment menu of the
car. The (B) standard, (C) voice, and (D) voice+LED modalities were activated when a warning was delivered.

Participants knew that they would receive a warning during
each drive. Still, the warning presentation was
pseudorandomized, where they would receive a complete
permutation of the 3 warning modalities within a blood glucose
phase. Participants were not explicitly informed about which
warning was “the intervention of interest” and which one was
the “comparator.”

Objective Emotional Reaction
Emotional reaction was measured physiologically through skin
conductance response (SCR). SCR is the result of the
sympathetic nervous system promptly regulating the activity of
the sweat glands in response to a stimulus. This measure is
associated with emotional arousal [42] and can be used to
measure event-related emotional reactions objectively [43]. In
this study, the Empatica E4 (Empatica Inc), a Conformité
Européenne–certified wristband collecting physiological data
in real time, was used. Participants wore the E4 during the main
visit (see the Procedure section). Note that this measure
provided solely the arousal dimension of emotion.

Subjective Emotional Reaction
Emotional reaction was also measured subjectively through the
Affective Slider [39]. This digital scale is a self-reporting tool
measuring valence and arousal on 2 separate sliders. Participants
did not see any numerical anchor, but the score ranged from 0
to 100. Thus, valence is rated between a frowning and a smiling
face (0=frowning and 100=smiling), and arousal between a
sleepy and a widely awake face (0=sleepy and 100=widely
awake).

Warning Perceived Urgency, Alerting Effectiveness, and
Annoyance
To measure the perceived urgency mapping of the 3 modalities,
for each modality, participants rated the perceived urgency,
alerting effectiveness, and annoyance according to a scale from
prior work [20]. The 3 dimensions were rated using a 5-point
Likert scale (1=very urgent or effective or I like it very much
and 5=very insignificant or ineffective or I dislike it very much).
This questionnaire was filled out during the posttest visit (see
the Procedure section).

Warning Acceptance
To compare the acceptance of the 3 modalities, participants
filled out the Van Der Laan Acceptance Scale [40], once per
modality. This scale consists of the 2 constructs, usefulness and
satisfaction, with items answered on a 5-point semantic
differential from –2 to +2, which means participants had to
select a point between 2 opposite adjectives (eg, unpleasant or
pleasant). This questionnaire was filled out during the posttest
visit (see the Procedure section).

Warning Preference
To formalize their preference, patients were asked to rank the
3 modalities from best to worst. The scale was implemented as
a radio button questionnaire with 1 item per modality (ie, beep
with a warning sign and text, voice, and LED with voice) and
a 3-point scale (ie, 1=best and 3=worst). Participants were also
encouraged to provide comments to their answers, which were
topically (ie, without verbatim transcription) recorded in written
form. This questionnaire was filled out during the posttest visit
(see the Procedure section).
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Setting

Simulated Driving
Patients used a driving simulator (Carnetsoft Inc), featuring 3
monitors displaying the front, left, and right views of the driving
cabin. The central monitor also displayed the cockpit and
navigation arrows, which directed the patient through the
environment. To control the simulator, participants used a

steering wheel and pedals (Logitech Driving Force G29,
Logitech), set to the automatic transmission. The simulator was
connected to a stereo speaker and maintained at a constant
volume (Figure 2A and C). The infotainment system simulator
tablet (see the Warning section) was placed under the right side
of the central monitor and connected to the simulator’s sound
system. The LED lights were attached at the bottom of the 3
monitors. Figure 2A and 2C illustrates the patient’s setup.

Figure 2. Comparison of patient’s and experimenter’s setup between simulated and real-world driving. The left figures represent the simulated driving
setting, the right figures represent the real-world driving setting, the top figures (A and C) show the patient’s setup, and the bottom figures (B and D)
show the experimenter’s setup.

The experimenter was standing behind the patient and controlled
the LED stripes with a smartphone (Redmi Note, Xiaomi Inc)
and the tablet via a laptop computer (ThinkPad X1 Carbon,
Lenovo PC HK Ltd). A stopwatch app was used to manually
onset the warning. Figure 2B and 2D illustrates the
experimenter’s setup.

Three environments were used, namely, highway, countryside,
and town, with the highway being the easiest to navigate due
to variable traffic but no turns, the countryside having a
moderated amount of traffic and turns, and the town being the
most difficult with the most turns and traffic. Participants drove
in the environments for about 5 minutes before receiving a
hypoglycemia warning (run-in phase).

Real-World Driving
Patients drove in a minivan (Touran, Volkswagen) with an
automatic transmission. The car was equipped with dual pedals
to allow for intervention from a trained driving instructor, in
case of emergency. In case the instructor needed to intervene,
the event was recorded.

The infotainment system simulator tablet (see the Warning
section) was placed on top of the infotainment screen and
connected to the car’s sound system, maintained at a constant

volume. The LED lights were attached along the cockpit from
the left to the right extremities, passing by under the steering
wheel, the infotainment system, and above the aperture of the
glove compartment. The experimenter was sitting in the third
row of the car and controlled the LED stripes with a smartphone
and the tablet via a laptop computer (6th Gen ThinkPad X1
Carbon, Lenovo PC HK Ltd). A Google Map was used to
manually onset the warning.

Patients were exposed to real-world driving on a test track
provided by the Swiss Federal Department of Defense, Civil
Protection and Sports. The driving scenarios on the track were
designed to correspond with simulated environments used in
the simulator setting (ie, highway, countryside, and town),
featuring various driving elements such as turns, crossroads,
stop signs, and a pedestrian crossing equipped with a dummy.
As traffic simulation was not feasible, artificial obstacles,
including boxes and traffic pylons, were used. Participants drove
in the environments for 5-7 minutes before receiving a
hypoglycemia warning (run-in phase).

Ethical Considerations
The experiments were approved within the context of this project
by the cantonal ethics commission of Bern, Switzerland
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(BASEC2020-00685 and BASEC2021-02381). Before any
study-related procedure, informed consent specifying the
analysis and the study protocol presented in this paper was
obtained in written form from all participants. All collected data
were deidentified by associating individual data to a numerical
identification number. The data reported in this paper are part
of the HEADWIND Study, a clinical trial registered under
ClinicalTrials.gov (Part 3: NCT05183191 and Part 4:
NCT05308095).

Procedure
The procedure was divided into 3 visits. In a pretest visit,
patients were welcomed to the Bern University Hospital,
informed about the procedure and the warnings, and asked to
fill out demographic and experience and beliefs questionnaires.

In the main visit, participants were welcomed to the relevant
setting for the blood glucose manipulation and the objective
emotional reaction measurements. Participants were aware that
their blood sugar would be manipulated to reach specific goal
ranges, but they were not informed of their blood glucose during
the experiment. In the real-world driving setting, the driving
instructor was also aware of the blood glucose manipulation
and was blinded to the current blood glucose. The experimental
team was not blinded to the blood glucose level.

Each participant went through a fixed sequence of blood glucose
phases: (1) a first drive with normal blood glucose (phase 1:
euglycemia), where participants were first experiencing all types
of environment and warning (and was thus considered as
training); (2) a phase where blood glucose was progressively
decreasing toward the moderate hypoglycemia threshold (ie,
<3.0 mmol/L) with a target range of 3-3.5 mmol/L (phase 2:
decreasing); (3) a phase with stable moderate hypoglycemia
(phase 3: hypoglycemia); and (4) a final phase with normal
blood glucose (phase 4: euglycemia). A warning was delivered
at the end of each drive to explore the effect of the blood glucose
phase. Participants drove in the 3 types of environments in each
phase. The sequence of environment type was
pseudorandomized [8], that is, participants were exposed to all
3 warning modalities within each phase, but the sequence of
modalities within 1 phase was random. Similarly, the warning
modality was pseudorandomized to balance modality with
environments. Once participants received a warning, they were
expected to stop, and the drive came to an end. At the end of
each drive, participants filled out the Affective Slider referring
to the warning they just received. Figure 3 shows an overview
of the procedure.

Figure 3. Overview of the procedure. The vertical gray bars represent the drives, the ribbon delimited by solid lines represents the blood glucose
manipulation, the vertical dashed lines represent the warning deliveries, the vertical dotted lines represent the Affective Slider submission, and the
horizontal dotted line represents the hypoglycemia threshold.

In a posttest visit, participants were once more exposed to the
3 warning modalities and were required, after each exposure,
to fill the Baldwin and Moore scale [20] and the Van Der Laan
Acceptance Scale. Finally, they ranked the 3 warning modalities.

Data Analysis
The continuous variables of sample characteristics (ie,
demographics and previous experience) are presented with mean
and SD. Frequency variables of sample characteristics are
presented in count numbers (ie, n) and percentages of the total
experiment sample.

Emotional reaction (objective and subjective) measures were
analyzed as a function of blood glucose (excluding phase 1)
and warning modality and verified with a mixed-effects linear
model, ANOVA test, and a significance threshold of P=.05.

Effect size was calculated with partial η2 (0.01 indicates a small
effect, 0.06 indicates a medium effect, and 0.14 indicates a large
effect). Moreover, the objective emotional reaction was analyzed
following established guidelines [43]: SCR (ie, rapid phasic
component) was standardized for individual differences by
dividing the SCR signal by the individual maximum SCR and
by reducing the noise. In addition, SCR was calculated by
considering the change in skin conductance between the average
skin conductance in the 5-second window before the warning
onset and the average skin conductance in the 5-second window
after the warning onset itself (including latency of 1 second).
For each measure of emotional reaction, a mixed-effects linear
model was estimated with warning modality (3 levels: standard,
voice, and voice+LED) and blood glucose (3 levels: normal,
decreasing, and hypoglycemia) as independent variables and
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with emotional reaction measure (ie, either self-reported arousal,
self-reported valence, or SCR) as the dependent variable.

Warning evaluations (ie, perceived urgency, alerting
effectiveness, annoyance, and acceptance) were aggregated with
means and SDs, presented in a table. Moreover, perceived
urgency, alerting effectiveness, and annoyance were centered
on 2 to match the acceptance scores, for the sake of comparison.

Preference ranking was aggregated across modalities in the
frequency of rank as best, middle, or worst (ie, how many times
1 modality was ranked as the best, middle, or worst in
comparison to the other 2). If participants were commenting on
their choices, highlight note-taking was performed.

Data analysis and graphical representations were performed
using RStudio (Posit Software) packages such as lmerTest or
mixed-effects linear modeling and ggplot2 and patchwork for
data visualization. All results are separated by experiment (ie,

simulated vs real-world driving) and juxtaposed to allow direct
comparison.

Results

Overview
The data of 2 participants of the simulated driving study were
excluded due to partial data loss. In the real-world driving
setting, the driving instruction had to intervene in 1 instance,
as the participants did not follow the driving path (ie, did not
turn left) during phase 4 (ie, while in euglycemia).

Sample Characteristics
Overall, the majority were male participants, who drove multiple
times per week and did not have previous experience with
in-vehicle VAs. Participants were approximately 40 years of
age and had a Technology Readiness Index between 3.5 and 4
(over a maximum of 5). Details are shown in Table 2.

Table 2. Sample characteristics across studies.

Real-world (n=10)Simulated (n=9)Characteristics

Sex, n (%)

7 (67)8 (89)Male

3 (33)1 (11)Female

37.3 (11.1)45.7 (11.79)Age (years), mean (SD)

Frequency of driving, n (%)

1 (10)1 (11)1 time per month

2 (20)—a2-5 times per month

4 (40)5 (56)2-5 times per week

3 (30)3 (33)Every day

Previous use of in-vehicle voice assistants, n (%)

6 (60)4 (44)Never

2 (20)1 (11)Rarely

1 (10)2 (22)Sometimes

1 (10)2 (22)Often

3.9 (0.5)3.6 (0.62)TRIb (over a maximum of 5), mean (SD)

aNot available.
bTRI: Technology Readiness Index.

Emotional Reaction

Overview
In this section, the results of the self-reported and physiological
measures of emotional reaction (ie, self-reported valence and
arousal and SCR) are described. A mixed-effect model was run

on all these measures, with warning modality and blood glucose
phase as independent variables.

Self-Reported Arousal and Valence
According to our results, the mixed-effect models were
significant for both valence and arousal in both studies (P<.001).
Figure 4 shows the means and SEs for arousal and valence.
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Figure 4. Line plots of arousal and valence across warning modality and blood glucose phases across (A and C) simulated and (B and D) real-world
driving. Error bars represent SEs.

In the simulated driving study, arousal was not significantly
affected by either of the independent variables (modality:

F2,68=0.1; P=.91; partial η2=0, blood glucose phase: F2,68=1.1;

P=.35; partial η2=0.03). Valence was significantly affected by

warning modality (F2,68=3.9; P=.03; partial η2=0.10) but not

by blood glucose phase (F2,68=1.1; P=.35; partial η2=0.03).

In the real-world driving study, arousal was significantly
affected both by warning modality (F2,76=4.3; P=.02; partial

η2=0.10) and blood glucose phase (F2,76=4.1; P=.02; partial

η2=0.10). Valence was significantly affected by blood glucose

phase (F2,76=9.3; P<.001; partial η2=0.20) but not by warning

modality (F2,76=2; P=.14; partial η2=0.05).

Physiological Arousal
According to our results, the mixed-effect models were not
significant in both studies. Hence, the warning modality and
blood glucose phase did not significantly affect physiological
arousal measured via SCR neither in the simulated driving study

(modality: F2,68=2.46; P=.09; partial η2=0.1, blood glucose

phase: F2,68=0.3; P=.74; partial η2=0). nor in the real-world

driving study (modality: F2,76=0.8; P=.47; partial η2=0, blood

glucose phase: F2,76=0.7; P=.5; partial η2=0).

Technology Acceptance
In this section, the technology acceptance results (ie, Baldwin
and Moore scales of urgency, effectiveness, and annoyance and
the Van Der Laan Acceptance Scale) are described. Details are
available in Table 3 [44].
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Table 3. Technology acceptance measure across studies.

Real-world driving, mean (SD)Simulated driving, mean (SD)Measure and warning modalities

Urgency

2.6 (1.26)1.88 (1.55)Standard

3 (0.82)2.88 (1)Voice

3.6 (0.52)3.12 (0.64)Voice+LED

Effectiveness

3.3 (1.06)2.25 (1.16)Standard

3.6 (0.7)2.75 (1.28)Voice

3.5 (0.71)3.38 (1.06)Voice+LED

Annoyance

1.7 (0.95)2.25 (1.16)Standard

1 (0.82)0.88 (0.84)Voice

1.1 (1.2)0.5 (0.76)Voice+LED

Acceptance

3.52 (0.53)3.35 (0.55)Standard

3.88 (0.41)3.74 (0.47)Voice

3.77 (0.61)3.86 (0.47)Voice+LED

In the simulated driving study, the voice+LED modality elicited
the highest sense of urgency and effectiveness, the least
annoyance, and the highest acceptance, followed by the voice
modality. In real-world driving, the voice+LED modality elicited
the highest sense of urgency and least annoyance, while the
voice modality elicited the most sense of effectiveness and the
highest acceptance.

Preference Ranking
The average rank in the simulated driving study was 1.5 (SD
0.82) for the voice+LED modality, 2.2 (SD 0.6) for the voice
modality, and 2.4 (SD 0.81) for the standard modality. The
average rank in real-world driving was 1.8 (SD 0.79) for both
the voice+LED and voice modalities and 2.4 (SD 0.84) for the
standard modality.

In the real-world driving study, topical feedback showed that
6 participants mentioned that the light was not noticeable while
driving (eg, “I have not noticed the light but at night, it certainly
works better” [Participant 4]).

Discussion

Principal Findings
This study investigated the effect of warning modality (visual,
vocal, and vocal with ambient lighting) on the emotional
reaction and the acceptance of such a technology. Our results
showed that voice warnings are more appreciated and considered
more effective than standard warnings. However, the ambient
lighting did affect such judgments.

Effects of Warning Modality on Emotional Reaction

Effect on SCR
No significant effect of warning modality (or blood glucose
phase) on skin conductance was found. SCR measured through
Empatica E4 has been previously shown to be linked with
response to stimuli [45-47]. Moreover, it has been associated
with blood glucose variation [48,49]. Therefore, we may
consider the possibility that the measurement protocol used in
this research may have experienced certain weaknesses and
have affected the validity of the obtained results. Hence, we
cannot consider the lack of significant results as negative
evidence. Nevertheless, future research should further
investigate the startling effect of the voice warning while
driving, either by replicating our experimental setting, by using
alternative electrodermal activity measurement tools [50], or
by using other measures of emotional reaction, such as eye
blinks [44].

Self-Reports
Our results showed that although in simulated driving the effect
of modality on self-reported arousal was not significant, this
was the case in real-world driving. In particular, higher arousal
was observed during decreasing glucose and hypoglycemia for
the voice and voice+LED modalities. Moreover, in the simulated
driving study, the results on self-reported valence show a
significant effect of modality, with voice+LED and voice
warnings eliciting higher valence than a standard warning,
particularly during decreasing glucose and hypoglycemia. This
was not the case in the real-world driving study.

Despite the mixed results, the warning modality had a significant
effect in the critical moments, that is, when the participants
were about to experience or already experiencing hypoglycemia.
Thus, our results showed the relevance of measuring emotional
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reaction at different levels of blood glucose. While the Affective
Slider is a very efficient measurement tool, it is important to
note that some participants expressed a lack of confidence in
self-reporting their emotions with it. Thus, future research might
benefit from using alternative self-reported measures of emotion,
such as the Positive and Negative Affect Schedule [51] or the
Discreet Emotions Questionnaire [52].

Mixed Results
These mixed results preclude the formulation of definitive
conclusions regarding the effect of modality on emotional
reaction based on this study. As a sudden auditory stimulus can
create a startling reaction, which can interfere with driving
performance [10,33], future research should consider our
recommendations and further investigate the design of a warning
that is both effective and nonstartling.

Effects of Warning Modality on Acceptance and
Preference

Acceptance
Our results demonstrated that the voice+LED modality tended
to be the most valued regarding acceptance and preference.
However, in the real-world driving study, this advantage,
compared to the voice modality, seemed to decrease compared
to the simulated driving study. This change might be due to the
setup, where the ambient lighting was more visible in the
laboratory than outdoors. Therefore, the advantage of the
ambient lighting might have decreased in the real-world driving
study. Thus, from the results, it is clear that the voice warning
had an advantage over the standard warning, while the addition
of ambient lighting (ie, voice+LED modality) did not bring a
substantial advantage.

Preference
Finally, when asking participants for a posttest ranking of the
warning modalities, results showed that voice (ie, both voice
and voice+LED modalities) had a constant advantage over a
beep with text (ie, standard modality). However, in the simulated
driving study, the voice+LED modality was ranked first more
often than in the real-world driving study, leading to interpret
these results similar to the technology acceptance results, that
is, adding ambient lighting to a voice warning was not
considered substantially advantageous. These results might be
influenced by the perception of the lights in daylight conditions,
which differed between the simulated and the real-world driving
settings. Based on the topical feedback from the participants
experiencing the real-world driving setting, it might be that the
contrast between the exterior and interior luminance was too
low. As we did not measure the contrast in luminance between
the daylight and the LEDs, future research should further
investigate the use of ambient lighting as a component of
in-vehicle warnings with greater control on luminance [53].

Implications
This paper involves implications both from health and
automotive perceptive. First, our investigation represents a step
forward in managing a real-life hazard associated with
hypoglycemia. Our previous work [8] focused on designing an
effective voice warning. This work compared it to a standard

warning with an unspecified auditory signal with a text, and
with an addition of ambient lighting, to make the voice warning
less abrupt. Our results show an advantage for a voice warning
(ie, spoken) over a tone with text but not for ambient lighting.
While participants showed a higher preference for adding
ambient lighting in the simulated driving study, the way the
ambient lighting was set in the real-world driving study was
not noticeable enough to replicate the results. Other work has
investigated more attention-grabbing ambient lighting, such as
blinking lights [54]. Future research should investigate if
different typologies of ambient light patterns could affect
emotional reaction and acceptance.

Second, our investigation aims to inspire in-vehicle technology
designers to develop in-vehicle health warnings using the
in-vehicle VA. While there are driver-state warnings, they
predominantly alarm the driver with an unspecific beep and a
text on the cockpit. Future research should investigate how
using the in-vehicle VA to warn the driver about dizziness or
lack of attention would be accepted by drivers. Moreover,
providing health-related warnings while driving fits the concept
of “health-conscious” cars [55,56]. Along the lines of our
investigation, there have been some attempts to develop blood
glucose monitoring interfaces for the car [17,18]. However,
they primarily rely on visual displays and are ill-adapted to the
context of driving.

Finally, this study assumed the delivery of a hypoglycemia
warning in a car with an autonomy of level 0 (ie, no automation)
or level 1 (ie, with driver assistance). As cars are becoming
increasingly automated, a hypoglycemia warning should be
compatible with cars with a higher level of autonomy. However,
the warning designed in this work is compatible with higher
levels of automation. For instance, during autonomous driving,
the in-vehicle VA could alert the driver that hypoglycemia has
been detected and trigger the car to autonomously stop. During
manual driving, the in-vehicle VA could warn the driver and
trigger the car to take over (switch from manual to autonomous
driving) and pull over.

Limitations and Future Research
Despite our best efforts, this investigation involved certain
limitations. First, the sample size was rather small. Nevertheless,
valuable insights on digital solutions can be provided with a
small sample size [57-59]. Thus, although it does not allow
drawing conclusions on the interaction of drivers with T1DM
with in-vehicle hypoglycemia warnings, it motivates further
research in this domain.

Second, emotional response to the warning was evaluated in
different blood glucose states and a controlled setting (ie,
simulator and closed circuit). However, the warning was not
delivered when relevant (ie, only when the driver was actually
undergoing hypoglycemia) or while the participant was driving
on a public road unaware of the upcoming critical state. While
our method allowed controlling for the blood glucose in the
emotional response, it did not allow us to find the opportune
moment for intervention delivery, that is, at what point of
upcoming hypoglycemia is the warning most appropriate (both
in terms of emotional reaction and acceptance). Future research
should investigate the effectiveness of such an intervention in
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a more realistic context, where the driver does not expect to be
warned and is actually about to undergo hypoglycemia while
on a public road.

Conclusions
This paper proposes the use of the in-vehicle VA and ambient
lighting system to deliver a hypoglycemia warning, ensuring a
hands-free alert. The investigation focused on the extent to

which warning modality could affect emotional response and
acceptance both in a simulated and real-world environment.
Although further investigations are needed, our results suggest,
together with our previous work [8], that implementing
multimodal warnings can improve the management of
hypoglycemia in cars and also emphasize the potential of
in-vehicle VA for delivering health-related warnings.
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