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Abstract

Background: Cognitive functional ability affects the accessibility of IT and is thus something that should be controlled for in
user experience (UX) research. However, many cognitive function assessment batteries are long and complex, making them
impractical for use in conventional experimental time frames. Therefore, there is a need for a short and reliable cognitive assessment
that has discriminant validity for cognitive functions needed for general IT tasks. One potential candidate is the Trail Making
Test (TMT).

Objective: This study investigated the usefulness of a digital TMT as a cognitive profiling tool in IT-related UX research by
assessing its predictive validity on general IT task performance and exploring its discriminant validity according to discrete
cognitive functions required to perform the IT task.

Methods: A digital TMT (parts A and B) named Axon was administered to 27 healthy participants, followed by administration
of 5 IT tasks in the form of CAPTCHAs (Completely Automated Public Turing tests to Tell Computers and Humans Apart). The
discrete cognitive functions required to perform each CAPTCHA were rated by trained evaluators. To further explain and
cross-validate our results, the original TMT and 2 psychological assessments of visuomotor and short-term memory function
were administered.

Results: Axon A and B were administrable in less than 5 minutes, and overall performance was significantly predictive of
general IT task performance (F5,19=6.352; P=.001; Λ=0.374). This result was driven by performance on Axon B (F5,19=3.382;
P=.02; Λ=0.529), particularly for IT tasks involving the combination of executive processing with visual object and pattern
recognition. Furthermore, Axon was cross-validated with the original TMT (Pcorr=.001 and Pcorr=.017 for A and B, respectively)
and visuomotor and short-term memory tasks.

Conclusions: The results demonstrate that variance in IT task performance among an age-homogenous neurotypical population
can be related to intersubject variance in cognitive function as assessed by Axon. Although Axon’s predictive validity seemed
stronger for tasks involving the combination of executive function with visual object and pattern recognition, these cognitive
functions are arguably relevant to the majority of IT interfaces. Considering its short administration time and remote
implementability, the Axon digital TMT demonstrates the potential to be a useful cognitive profiling tool for IT-based UX
research.

(JMIR Hum Factors 2024;11:e49992) doi: 10.2196/49992
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Introduction

Cognitive functional ability is a fundamental factor widely
recognized to influence IT usability [1-3]. The classical approach
to control for cognitive functional ability is to target participants
according to general demographics based on age, education, or
other factors [4,5]. However, this approach intrinsically
precludes the ability to control for or assess how cognitive
functional ability impacts IT usability in individual users,
thereby limiting the extent which insight can be gained within
a demographic or for an individual. Moreover, this approach is
incongruent with the rapid advancement of IT toward products
that adapt to individual user characteristics, thus necessitating
a more granular understanding of individual cognitive abilities
[6-8].

To obtain a granular characterization of individual cognitive
function, hitherto, research has typically used cognitive
assessment batteries [9-11]. Dumont et al [12] used the National
Institutes of Health Toolbox, which is a battery of cognitive
tests that can be completed in 40 minutes [13] to develop a
cognitive analysis grid to be able to draw statistical parallels
between the cognitive demands of an information systems
interface and the performance of a user. Other batteries of tests
were also used, such as the Kit of Factor-Referenced Cognitive
Tests [10], which was used by Wagner et al [1] to study the
impact of age on website usability and by Allen [14] in his
research to study the combination of users’ cognitive abilities
and specific information system functionalities that can be
implemented to create system usability. This battery is typically
administered in 144 minutes [15]. Another approach for
assessing individual cognitive ability is to use clinically
administered tests such as the Montreal Cognitive Assessment
(MoCA) or the Mini-Mental State Examination (MMSE).
Although typically used in medical settings to evaluate cognitive
impairment in patients with neurological disorders [9,11], MoCA
and MMSE have been reportedly used to measure the cognitive
abilities of participants in human-computer interaction
experiments [3,16-18]. However, while detailed and accurate,
these cognitive assessment batteries are too lengthy to practically
administer during typical user experience (UX) testing time
frames [19,20]. Furthermore, while clinically administered tests
such as MoCA and MMSE are comparatively shorter than other
assessment batteries, they require a trained administrator to
administer and score the test [3]. This level of expertise may
not always be available, particularly in UX research settings
where mostly nonclinically trained research personnel are
conducting the experiments.

Correspondingly, there have been calls from across health, UX,
and IT domains for a more practical yet accurate means of
assessing cognitive function [12,21,22]. One solution would be
to identify a short test with reduced scope but which nevertheless
targets cognitive functions important for using IT. Based on
research conducted to understand the impact of cognitive
functions on the use of technology by older people [23,24], and
on existing models of cognitive architecture in human-computer
interaction [25], we identified 5 key cognitive functions
important for IT use: visual perception, motor function,
executive function, inhibitory control, and working memory.

Visual perception is important for finding relevant information
cues on a web page [23]. Motor functions are involved in tasks
such as data entry using the keyboard, navigation using the
mouse, or other tool to perform a digital task [26]. Executive
functions come into play in order to make decisions and
prioritize action [23]. Inhibitory control, also called “response
inhibition” [27], is the functional ability to inhibit or override
motor commands or other executive processing, such as when
an external stimulus interferes with goal-driven behavior as in
a task-switching situation [28,29]. Finally, short-term or working
memory capacity may be important in IT task performance, for
example, for remembering options or system output at a later
stage [23].

One potential preexisting cognitive assessment candidate that
targets these cognitive functions related to IT use is the Trail
Making Test (TMT). First developed for the Army Individual
Test Battery [30], the TMT is one of the most widely used
instruments in neuropsychological assessment as an indicator
of cognitive processing speed and executive functioning [31-35].
Many studies have been conducted to determine which cognitive
abilities are engaged during the completion of this 2-part test
(TMT-A and TMT-B). After a comprehensive review of the
literature on the topic, Sánchez-Cubillo et al [36] explored the
contributions of certain cognitive functions and found that part
A of the TMT (TMT-A) mainly requires visual-perceptual
abilities, and that part B (TMT-B) reflects primarily working
memory, executive function, and task-switching ability. Finally,
although its contribution in the TMT has been questioned by
the study of Sánchez-Cubillo et al [36], it is interesting to note
that psychomotor ability has been mentioned numerous times
as one of the abilities required for both parts of the TMT (Groff
and Hubble [37] in both parts, Schear and Sato [38], Gaudino
et al [39], and Crowe [40] in part B). The primary objective of
this study was to test the validity of using the TMT as a
cognitive profiling tool to predict or explain the variance in IT
task performance. With an interest in a practical tool for
cognitive profile assessments in UX testing of digital artifacts,
we chose to use a digital version of the TMT. To further support
and explain our results, we additionally cross-validated the
digital TMT with the original TMT, a visual search task
assessing visuomotor processing [41,42], and a hidden path
learning task assessing visuomotor-processing speed, spatial
working memory, and error-monitoring ability [43]. We had
two hypotheses: (1) TMT times would be predictive of general
IT task performance and (2) that the predictive power of the
TMT would be stronger for tasks requiring the use of cognitive
functions that are congruent with those assessed by the TMT.

Methods

Sample
To test our hypothesis, we conducted a laboratory experiment
with 27 healthy participants (12 men and 15 women), between
18 and 36 (mean 24, SD 4.22) years of age, who were mostly
university students (n=22, 85%).

Ethical Considerations
Written informed consent was obtained from all subjects via a
signed form at the beginning of the experiment. This project
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was approved by our institution’s research ethics committee
(#2021-4108). A monetary compensation of CAD $25 (US
$18.35) was provided to each subject upon completion of the
experiment. Data from 1 subject were lost due to technical
issues, thus leaving data from 26 participants available for
analysis. All data were anonymized prior to analysis and stored
in encrypted servers only accessible by authorized researchers.

IT Tasks
Two types of general IT tasks were used in the experiment. One
type of IT task was based on CAPTCHA (Completely
Automated Public Turing Tests to Tell Computers and Humans
Apart). This type of Turing test is widely used in IT to ensure
the cybersecurity of many internet services, as they prevent a
number of attacks from automated programs (often referred to
as bots), by distinguishing legitimate users from computer bots
while requiring minimal effort by the human user [44]. Four

CAPTCHAs were based on typical existent CAPTCHAs and
included Google reCAPTCHA (Google), pictogram recognition
(PicRec), numerical recognition (NumRec), and text recognition
(Text). A Fifth task was taken from Raven’s Progressive
Matrices (RPM) and presented in a CAPTCHA format. RPM
are a collection of widely used standardized intelligence tests
consisting of analogy problems in which a matrix of geometric
figures is presented with 1 entry missing, and the correct missing
entry must be selected from a set of answer choices [45]. A 3×3
RPM was selected as it was considered that it offered the best
trade-off between cognitive effort and the time required to
complete it. The final 5 IT tasks, shown in Figure 1, were
embedded on a Qualtrics questionnaire. For this study, we
targeted IT task completion time, measured as the time from
the display of each task to when subjects responded and pressed
the “next” button, based on 30 fps screen recordings.

Figure 1. The 5 information technology tasks. (A) Text-based Completely Automated Public Turing tests to tell Computers and Humans Apart
(CAPTCHA): subjects had to type the 2 words in an input field below the text image. (B) Pictogram recognition CAPTCHA: subjects had to recognize
and click on the image showing the 2 dice with the same pictogram on the top face. (C) Google reCAPTCHA: subjects had to recognize and click on
the images showing the bicycles. (D) Number recognition CAPTCHA: subjects had to recognize and click on the image showing dice summing to 14
on the top faces (numerals and dots combined). (E) Raven’s Progressive Matrix: subjects had to click from among the 8 proposed images the one which
most appropriately fit in the missing corner of the basic matrix.
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The other type of IT task was a website design evaluation to
assess perceived usability using Aladwani and Palvia’s [46]
user-perceived web quality measurement scale. Screenshots of
the home pages of the following 5 websites were used:
Vignerons d’Exception [47], Renaud-Bray [48], LesPAC [49],
[50], and [51]. One website was presented subsequent to each
CAPTCHA. Participants were told that the website evaluation
was the primary task of the experiment and that the CAPTCHAs
were present as a security measure to access our database
housing the website screenshots. However, the website
evaluations were actually dummy tasks, and participant
responses were not analyzed. The IT tasks really targeted and
analyzed in this study were the CAPTCHAs.

Cognitive Function Characterization of CAPTCHAs
The principal reason CAPTCHAs were chosen as our general
IT tasks is because they are ubiquitous in IT and because they
are often distinguishable from one another according to

task-specific demands such as math, 3D orientation, text
recognition, and visual search, suggesting that different
underlying cognitive processing required them. However, there
is a paucity of studies regarding the examination of the specific
cognitive functions of CAPTCHAs. Therefore, we formed a
panel of 11 trained, nonexpert evaluators to rank the selected
CAPTCHAs on a 5-point agreement scale according to the 5
cognitive functions mentioned in the Introduction section, which
have been deemed relevant to IT tasks and the TMT:
visuospatial perception, motor function, executive function,
inhibitory control, and working memory. The evaluation scores
permitted each CAPTCHA to be assigned a rank according to
the extent the cognitive functions required to perform it
overlapped with those of the TMT. In order of highest to lowest
alignment, the rankings were as follows: (1) RPM, (2) NumRec,
(3) PicRec, (4) Google, and (5) Text, as shown in Table 1. For
details of how this evaluation was conducted and how the
process was validated, see Multimedia Appendix 1.

Table 1. Convergence ranks of IT tasks with the TMTa.

Text (A)Google (C)PicRecd (B)NumRecc (D)RPMb (E)IT task

3.82 (1.4)4.45 (1.04)4.45 (1.04)4.91 (0.30)5.00 (0.00)Executive function, mean (SD)

4.18 (1.17)4.82 (0.60)4.64 (0.67)4.27 (0.65)4.09 (0.70)Visual object recognition, mean (SD)

4.64 (0.67)3.82 (0.98)4.64 (0.67)4.45 (0.93)4.91 (0.30)Visual pattern recognition, mean (SD)

2.73 (1.27)2.45 (1.21)2.91 (1.51)3.91 (1.38)4.18 (0.60)Working memory, mean (SD)

3.84 (0.81)3.89 (1.04)4.16 (0.84)4.39 (0.42)4.55 (0.48)Evaluation score for reliable convergent
dimensions, mean (SD)

54321Convergence rank with TMT following

the evaluatione

aTMT: Trail Making Test.
bRPM: Raven's Progressive Matrices.
cNumRec: numerical recognition.
dPicRec: pictogram recognition.
eBased on the average evaluation scores of IT tasks on the reliable cognitive dimensions considered convergent with the TMT. A, B, C, D, and E refer
to the labels of the IT tasks presented in Figure 1.

Digital TMT
Because we are interested in cognitive assessment for UX testing
of IT and because it was convenient to present all the tasks on
the same device, we chose to use a digital version of the TMT
called “Axon” (Language Research Development Group). This
version emulates the original TMT as an iPad app, allowing the
user to draw the trail on the touch screen with 1 finger. The 2
parts (A and B) of the TMT were completed, each with 25
circles to connect. Axon TMT was designed with a canvas
generation algorithm, meaning that the test canvas for each
subject for each TMT A and B was different. As shown in Figure
2, both tests were presented in full screen on the iPad with 25
circles of 1-cm diameter placed randomly on the digital canvas

in a homogeneous way. The rules of Axon were identical to
those of the original TMT, as outlined by Bowie and Harvey
[52]. Participants had to connect the circles in ascending order:
from 1 to 25 for part A and from 1 to 13 for part B, alternating
numbers and letters in ascending order (ie, 1, A, 2, B, 3, C, etc).
Errors such as lifting the finger off the screen, crossing trails,
or connecting a wrong circle resulted in the line for the latest
segment to be automatically erased and subjects had to return
to the last successfully reached circle in order to continue. The
measures chosen for this study were the completion time for
each of the 2 parts of the test, from the moment the layout was
displayed until the last circle was reached. These measures were
exported from the app after the completion of the study and
used in our statistical analyses.
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Figure 2. Screenshots of Axon A and Axon B. Subjects had to draw to connect the circles in ascending order (from 1 to 25 for part A and from 1 to
13 and A to L for part B, alternating numbers and letters) on a single line, without crossing paths or lifting their finger from the screen. In case of errors
in drawing, the app automatically guided subjects back to the last correct circle from which they continued the test.

Cross-Validation of the Digital TMT

Overview
To better support and explain our results, we cross-validated
Axon with the original TMT and a working memory and a visual
search task.

Original TMT
The original TMT was administered as outlined by Bowie and
Harvey [52] at the end of the study. The practice step was
skipped in the interest of time and with the knowledge that the
subject had already performed the digital TMT earlier in the
study.

Hidden Path Learning Task
To cross-validate Axon’s ability to measure working memory
and spatial ability, we administered a hidden maze learning

task, based on the Groton Maze Learning Test developed by
Pietrzak et al [43]. Our task was called the “hidden path
learning” task and was based on a 10 × 10 grid. Five trials were
administered on the iPad via the Cognition Lab platform
(BeriSoft, Inc), following similar guidelines as the Groton Maze
Learning Test [43]. The hidden path learning task is particularly
targeted at working memory, as the user has to call on it to
navigate between tiles and remember any errors they may have
made before [53,54]. Correspondingly, working memory ability
is associated with the extent to which completion time decreases
over trials, revealing a learning curve. Thus, the metrics used
for these analyses were the difference between the completion
times of each consecutive trial on the task. A depiction of the
hidden path learning task is shown in Figure 3 (left). Measures
were automatically collected on the Cognition Lab server.

Figure 3. Cross-validation tasks. In the hidden path learning 10×10 matrix (left), subjects had to go from the yellow starting point to the green end
point 1 tile at a time. In the visual search task (right), there were 6 items, with 1 target and 5 distractors. In the I+N sequence (shown), participants had
to touch “Yes” at the bottom-right if they saw the target, “No” at the bottom-left otherwise.

Visual Search Task
To cross-validate Axon’s ability to measure visuomotor
function, we administered a visual search task on the Cognition
Lab platform (BeriSoft, Inc). This task was based on the work
by Treisman and Gelade [42] and involved finding a target
among distractors. Participants had to touch the right side of
the screen when they saw the target, the left side otherwise,

therefore involving visual and psychomotor response ability.
Three stimuli configurations were used, with 3 distractor sets.
Configurations were displayed with 24 trials for each stimulus,
leading to a total of 72 trials. For each trial, 3, 6, or 9 symbols
were displayed (letters or shapes), with even and randomized
distribution among each stimulus sequence. A depiction of this
task is shown in Figure 3 (right). Again, measures were
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automatically collected on the Cognition Lab server. Reaction
times were used for the present analyses.

Procedures
Upon arrival and after signing the informed consent form,
subjects were asked to sit on a chair facing the iPad Air (fourth
generation) running on iPadOS 15.3 (Apple Inc) placed on a
desk and were asked to adjust the chair’s height so that they
were comfortable using the iPad, and they were within the
camera recording frame. The experimental setup is presented
in Figure 4. They were asked to move the chair closer or further
away to maintain an approximate distance of 70 (±10) cm

between their eyes and the iPad screen to give enough space
for hand movement during the tasks. The camera was fixed
independently from the iPad to avoid unwanted movements on
the video when the participant presses the screen while doing
the tasks. After a presentation of the study and the tools used,
the participants were asked to complete the 2 parts of the TMT
(A and then B) on the Axon app. Task instructions were given
in a protocol format to ensure that all participants received the
same instructions and that the data would be comparable.
Participants were verbally and visually guided through the rules
of the TMT using a tutorial embedded in the app.

Figure 4. Experimental setup diagram. The subject was seated at a chair in front of a desk where the iPad Air 4 was placed. A Logitech C920 camera
was independently fixed to the desk via a camera stand and duct tape.

After completing parts A and B on the Axon app, participants
were administered the hidden path learning and the visual search
tasks. Then, participants commenced the IT task portion of the
experiment. As previously mentioned, participants were told
that the primary objective was to evaluate 5 interfaces of more
or less popular websites, each interface being on a secure server
accessible only after the completion of a CAPTCHA. Thus,
subjects completed a CAPTCHA, observed a web interface for
a few minutes, and then completed the user-perceived web
quality measurement scale [46]. This sequence was repeated 5
times, with the tasks presented in random order, each preceded
by a distinct CAPTCHA. At the end of the study, for ethical
reasons, subjects were told orally that they were in fact being
evaluated on their performance on the CAPTCHAs.

Statistical Analyses
To test the ability of the Axon TMT to predict performance on
the 5 CAPTCHA IT tasks, a repeated-measures multivariate
analysis of covariance (RM MANCOVA) was performed with
Axon A completion time and Axon B completion time as
independent predictors and the completion time for each of the
5 IT tasks as the dependent covariates.

To further interpret our results, we tested the relationship
between Axon TMT completion times and visuomotor function
by performing an RM MANCOVA with Axon A and Axon B
times as independent predictors and the mean reaction time of

each of the 3 visual search tasks (the shape of an arrow as a
target among the triangle shapes as distractors, the letter T as a
target among the letters I and N as distractors, and the letter T
as a target among the letters I and Z as distractors) as the
dependent covariates. In addition, we tested the relationship
between Axon TMT completion times and working memory
function by performing an RM MANCOVA with Axon A and
Axon B times as independent predictors and the difference
between the completion time of each consecutive trial on the
hidden path learning task as the dependent covariates. Finally,
we cross-validated the relationship between the Axon TMT and
the original TMT using 2 Pearson correlation tests, 1 each for
tests A and B.

For all RM MANCOVAs performed in the analysis, omnibus
results and multivariate results for each independent predictor
are reported. In the case of significant multivariate results,
simple main effects based on parameter estimates are reported
for dependent covariates, which were significantly predicted
by Axon.

All statistical analyses were conducted using the IBM SPSS
Statistics software (version 28.0.1.1; IBM Corp) with a threshold
for statistical significance set at P≤.05, using the Bonferroni
correction to adjust for multiple comparisons.
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Results

Axon TMT Cross-Validation

Axon Versus Original TMT
The mean scores of Axon A and B were 48.04 (SD 25.80) and
56.88 (SD 25.53) seconds, respectively. The mean scores on
the original TMT A and B were 29.22 (SD 12.26) and 51.62
(SD 19.07) seconds, respectively. Pearson correlation tests
revealed that Axon is highly correlated with TMT results, with
a significant positive correlation between Axon A and TMT A
(r=0.688; Pcorr=.001) and a significant positive correlation
between Axon B and TMT B (r=0.505; Pcorr=.017).

Axon TMT Versus Hidden Path Learning
The difference in consecutive trial times was (2–1) –29.87
(17.70), (3–2) –5.48 (6.01) seconds, (43) –4.30 (4.80) seconds,
and (5–4) –1.50 (4.25) seconds. The omnibus test of the RM
MANCOVA revealed that Axon A and Axon B combined are
significant to explain the variance in the decrease in completion
times across consecutive trials (F4,20=4.119; P=.01; Λ=0.548).
However, multivariate results revealed that the decrease in
completion times across trials was not predicted by Axon A
(F4,20=1.923; P=.15; Λ=0.722) or Axon B (F4,20=1.106; P=.38;
Λ=0.819) alone. Thus, a predictive relationship appears to exist
between Axon and working memory in the hidden path learning
task as a function of Axon A and B combined.

Axon TMT Versus Visual Search
Reaction times for the T among letters I and N, T among letters
I and Z, and arrow among triangles were 0.80 (0.14)
milliseconds, 0.78 (0.15) milliseconds, and 0.68 (0.14)
milliseconds, respectively. The omnibus test of the RM
MANCOVA revealed that Axon A and Axon B combined
significantly explained the variance in visuomotor function
assessed with reaction time to the 3 stimuli in the visual search
task (F3,21=3.125; P=.048; Λ=0.691). Multivariate results
revealed that this result was driven mainly by Axon A
(F3,21=3.220; P=.043; Λ=0.685) rather than Axon B
(F3,21=0.502; P=.69; Λ=0.933). Parameter estimates revealed
that Axon A was marginally significantly predictive of reaction
times to the letter T among letters I and N stimulus (β=3.573;
t21=2.767; Pcorr=.055) and significant for letter T among letters
I and Z (β=4.353; t21=3.156; Pcorr=.02) and arrow among
triangles (β=3.725; t21=3.158; Pcorr=.02) stimuli.

Axon TMT Predicts Overall IT Performance
The primary hypothesis assumed that there was a positive
predictive relationship between TMT performance and IT task
performance. The omnibus test of the RM MANCOVA revealed
that Axon A and Axon B combined significantly explain the
variance in IT tasks performance (F5,19=6.352; P=.001;
Λ=0.374), thereby supporting the primary hypothesis.
Multivariate results revealed that this effect was driven by
performance on Axon B (F5,19=3.382; P=.03; Λ=0.53). Figure
5 shows the distribution of Axon completion times in relation
to IT task completion times.
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Figure 5. Distribution of Axon A and B completion times in relation with the completion times of the 5 IT tasks (N=26). Axon B trendlines and
parameter estimates (β and P) show the relationship between Axon B IT task performance. Number in upper right corner of plot area is hypothesized
convergence rank (Table 1). IT: information technology; NumRec: numerical recognition; PicRec: pictogram recognition; RPM: Raven’s Progressive
Matrices. Letters A through E refer to the labels used for each task in Figure 1.

Axon TMT Better Predicts Performance on
Convergent IT Tasks
The second hypothesis assumed that the predictive relationship
between TMT performance and IT task performance would be
stronger if the cognitive abilities involved in the performance
were congruent. To test our hypothesis, we analyzed the
parameter estimates for the multivariate results of Axon B.
These revealed that Axon B was significantly predictive of IT
task C (RPM task; β=.785; t19=3.240; Pcorr=.018) and IT task
B (PicRec task; β=.260; t19=2.824; Pcorr=.048). However, IT
task D (number recognition task), which was rated the second
most congruent task with Axon, was not significantly predicted

by Axon B (β=.150; t19=0.479; Pcorr=3.183). Our secondary
hypothesis is therefore partially supported. These results are
shown in Figure 5, where the effects of individual factors of
Axon B on performance on IT tasks are represented (β and P
values).

Discussion

Principal Findings
Cognitive functional ability may well affect task performance
in UX and other research experimentation, leading to variance
in performance measures among the target population and
confounding the effects of experimental factors. Although
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detailed cognitive assessment batteries exist and can be used to
control intersubject differences in cognitive abilities [12], they
are not time efficient and thus impractical to implement within
typical experimental time frames. Here, this study tested the
validity of using the Axon TMT, which takes only a few minutes
to administer, to predict or explain the variance in IT task
performance in an age-homogenous subject population.

The mean age of the subject population of this sample was 24
(SD 4.22) years. This is typical of many research studies, UX
related or otherwise, relying on student recruitment through the
parent institution [55-57]. Despite the relatively low SD of age,
the SD in Axon TMT scores was broad, at 25.80 (mean 48.04)
and 25.53 (mean 56.9) seconds, respectively, for Axon A and
B, suggesting a large distribution of cognitive functional abilities
among this age-homogeneous neurotypical population. Notably,
the means and SDs for the Axon TMT, particularly for Axon
A, were higher than what is typically reported in the literature
for neurotypical subjects in this age bracket [58-60]. This may
be due to the fact that, unlike in the implementation of the
paper-based TMT, subjects did not practice a mini version of
the test before performing Axon A or B. Thus, some portion of
the time taken to complete the test must be attributable to
familiarization with task demands. This would also explain why
the mean scores for Axon B, whose task demands are similar
to Axon A in many respects, are closer to typically reported
TMT B means. Nevertheless, for the purposes of this study, it
is not absolute Axon TMT scores that are important. Rather, it
is the relative distribution of the variance in Axon scores and
their correlation to other metrics that is essential. To that end,
both Axon A and B significantly correlated to their respective
paper-based TMT counterparts showed a combined predictive
validity toward working memory via the hidden path learning
task. Furthermore, it was Axon A, not B, which was the
predominant driver of the significant correlation with visual
search performance. This is logical, as the visual search task
does not involve working memory–related processing [42,61].
Instead, it requires an emphasis on target identification,
cognitive control, and motor output, precisely the dominant
cognitive functions involved in TMT A [36,39,40]. Thus, far
from being problematic, implementing Axon A and B without
a preliminary minitest for practice was time-efficient and yielded
a reliable distribution of scores, which could be cross-correlated
with expected cognitive functions.

This cross-validation lends credibility to our observation that
Axon A and B combined were significantly predictive of IT
task performance, supporting our primary hypothesis.
Interestingly, for the IT tasks chosen, it was Axon B that
appeared as the stronger driver of predictive validity, suggesting
that it may be more powerful in capturing the executive
decision-making involved in an ecologically valid IT task.
Moreover, simple main effects tests revealed that Axon B
significantly correlated with 2 out of the top 3 tasks ranked as
requiring congruent cognitive functions as the TMT, thereby
partially supporting our secondary hypothesis. Contrary to our
expectations, the NumRec task, which had the second-highest
congruence rank, was not significantly correlated with Axon
B. We speculate that the confound here relates to the underlying
mathematical operations involved in solving that CAPTCHA.

Although raters classified this as executive decision-making, it
certainly can be said that neither TMT A nor TMT B requires
arithmetic. Therefore, there must be cognitive processes
involved that are simply not recruited during the performance
of the TMT, which our ranking system was not granularized
enough to capture, hence explaining the lack of correlation
between the NumRec task and Axon B. Meanwhile, Axon B
was most strongly correlated with the RPM and PicRec task,
suggesting that it is well suited for tasks involving visual pattern
and object recognition in combination with higher-order
executive processing to orient this visual information. These
kinds of processing are arguably crucial for interface navigation,
virtual reality, gaming, or using simulators, which are extremely
common IT tasks investigated in UX research [62-64]. Thus,
while Axon does appear to be better aligned with IT tasks
involving convergent cognitive processing, such tasks may well
comprise a major proportion of those studied in UX research.

Finally, there are a few points worth emphasizing. First, the
complete administration of Axon took less than 5 minutes, far
shorter than the strategy used by Dumont et al [12] or any other
cognitive assessment that we are aware of. Second, considering
Axon’s ability to differentiate from among an age-homogeneous
neurotypical population, it would likely perform even better
among populations where a larger variance in cognitive function
would be expected, such as in older adults, children, stroke
survivors, or other individuals with atypical cognitive function.
This is important because understanding how to design
appropriate and accessible IT for these populations has become
a topic of increasing concern in UX research [65-67]. Moreover,
Axon is suitable for remotely moderated experimentation, a
popular strategy since the COVID-19 pandemic [68] and one
that mitigates subject recruitment challenges for all population
types. Finally, the current advancement in technology,
particularly in the field of artificial intelligence, is trending
toward a more personalized and user-centric approach, adapting
technology to individual user characteristics such as preferences
and interests [8,69,70]. Part of this personalization could be to
tailor technology according to the cognitive abilities of users.
Axon could potentially facilitate this advancement, serving as
a quick and reliable metric to train the artificial intelligence
technology adaptation algorithm.

Limitations
There are some limitations that should be acknowledged with
this study. First, because the Axon app is designed to produce
TMT canvases according to an algorithm with every test
instance, the Axon A and B canvas layouts were not constant
across subjects. This means that some of the variance in Axon
A and B times is intrinsically attributable to factors such as
differences in the straight-line drawing path length of the test
or the extent of visual interference between each drawing
segment. On the other hand, the fact that Axon A and B were
significantly cross-validated with the original TMT and the
visual search and hidden path learning tasks in spite of canvas
layout differences between participants suggests that the
variance these differences cause is small and does not detract
from the use of Axon as a cognitive profiling tool in UX testing.
Second, this study tested the predictive validity of Axon on
simple and discrete IT tasks. This was necessary as a proof of
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concept for our hypotheses. However, readers should use caution
when generalizing the present results. Further research is needed
to investigate the extent to which Axon retains predictive
validity for more complex IT tasks in different contexts and
across various user demographics, including neuroatypical and
cognitively impaired users.

Conclusions
This study tested the ability of the Axon digital TMT to predict
performance on discrete IT tasks. The results indicate that

variance in IT task performance among an age-homogenous
neurotypical population can be related to intersubject variance
in cognitive function as assessed by Axon. Although the findings
suggest that Axon’s predictive validity may be strongest for IT
tasks involving the combination of decision-making with visual
object and pattern recognition, these types of cognitive
processing would arguably be relevant to the majority of IT
interfaces. Considering its short administration time and remote
implementability, the Axon digital TMT has the potential to be
a useful cognitive profiling tool for IT-based UX research.
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