
Original Paper

A Machine Learning Approach with Human-AI Collaboration for
Automated Classification of Patient Safety Event Reports:
Algorithm Development and Validation Study

Hongbo Chen1, MSc; Eldan Cohen1, PhD; Dulaney Wilson2, PhD; Myrtede Alfred1, PhD
1Department of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON, Canada
2Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, United States

Corresponding Author:
Myrtede Alfred, PhD
Department of Mechanical & Industrial Engineering
Faculty of Applied Science & Engineering
University of Toronto
27 King's College Cir
Toronto, ON, M5S 1A1
Canada
Phone: 1 4372154739
Email: myrtede.alfred@utoronto.ca

Abstract

Background: Adverse events refer to incidents with potential or actual harm to patients in hospitals. These events are typically
documented through patient safety event (PSE) reports, which consist of detailed narratives providing contextual information on
the occurrences. Accurate classification of PSE reports is crucial for patient safety monitoring. However, this process faces
challenges due to inconsistencies in classifications and the sheer volume of reports. Recent advancements in text representation,
particularly contextual text representation derived from transformer-based language models, offer a promising solution for more
precise PSE report classification. Integrating the machine learning (ML) classifier necessitates a balance between human expertise
and artificial intelligence (AI). Central to this integration is the concept of explainability, which is crucial for building trust and
ensuring effective human-AI collaboration.

Objective: This study aims to investigate the efficacy of ML classifiers trained using contextual text representation in automatically
classifying PSE reports. Furthermore, the study presents an interface that integrates the ML classifier with the explainability
technique to facilitate human-AI collaboration for PSE report classification.

Methods: This study used a data set of 861 PSE reports from a large academic hospital’s maternity units in the Southeastern
United States. Various ML classifiers were trained with both static and contextual text representations of PSE reports. The trained
ML classifiers were evaluated with multiclass classification metrics and the confusion matrix. The local interpretable model-agnostic
explanations (LIME) technique was used to provide the rationale for the ML classifier’s predictions. An interface that integrates
the ML classifier with the LIME technique was designed for incident reporting systems.

Results: The top-performing classifier using contextual representation was able to obtain an accuracy of 75.4% (95/126)
compared to an accuracy of 66.7% (84/126) by the top-performing classifier trained using static text representation. A PSE
reporting interface has been designed to facilitate human-AI collaboration in PSE report classification. In this design, the ML
classifier recommends the top 2 most probable event types, along with the explanations for the prediction, enabling PSE reporters
and patient safety analysts to choose the most suitable one. The LIME technique showed that the classifier occasionally relies on
arbitrary words for classification, emphasizing the necessity of human oversight.

Conclusions: This study demonstrates that training ML classifiers with contextual text representations can significantly enhance
the accuracy of PSE report classification. The interface designed in this study lays the foundation for human-AI collaboration in
the classification of PSE reports. The insights gained from this research enhance the decision-making process in PSE report
classification, enabling hospitals to more efficiently identify potential risks and hazards and enabling patient safety analysts to
take timely actions to prevent patient harm.
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Introduction

Since the publication of the seminal report on patient safety—To
Err Is Human [1], the importance of preventing adverse events
in health care has been widely recognized. Adverse events refer
to unintended or unexpected incidents that occur during hospital
care that cause harm to a patient [2]. Common adverse events
include complications, falls, and medication errors. These events
can lead to prolonged hospital stays, permanent harm to patients,
life-saving interventions, or even contributing to patient deaths
[2,3]. Unfortunately, adverse events remain one of the top 10
leading causes of death and disability worldwide, resulting in
251,454 deaths annually in the United States alone [4]. In
Organization for Economic Cooperation and Development
(OECD) countries, 15% of total hospital activity is the direct
result of adverse events [5]. The global cost of adverse events
has been estimated at 42 billion USD annually [6].

Patient safety event (PSE) reporting systems, also called incident
reporting systems, have been widely adopted in hospitals across
the world as part of their efforts to mitigate adverse events and
improve patient safety [7,8]. Multiple nations, including Canada,
Japan, England, and Norway, have made it mandatory for
hospitals to establish and maintain a PSE reporting system,
either with individual health care systems or through centralized
national incident reporting platforms [9]. The primary purpose
of the PSE reporting system is to provide health care
organizations with a centralized system for tracking and
analyzing PSEs, thereby facilitating continuous learning and
maintaining a record of PSEs for risk assessment and prevention
[7,10]. PSE reporting systems are tools that allow frontline
health care personnel to voluntarily report adverse events,
near-misses, and unsafe conditions [11]. Each PSE report
includes structured data, such as event types, patient harm level,
date, and location of the event, as well as unstructured data,
including a free-text section that contains the factual description
of the event and the patient’s outcome [12]. Following
submission, PSE reports are reviewed by relevant hospital staff,
such as risk managers, patient safety analysts, nurse managers,
physicians, and biomedical engineers, to identify areas for
patient safety and quality improvement within the hospital [13].

Accurately classifying PSE reports into their appropriate event
type is crucial to ensure that these reports are directed to the
relevant patient safety analyst, support organizational learning,
identify patterns and trends in adverse events, and ultimately
prioritize measures to reduce adverse events [14,15]. An event
type refers to a specific class of events that share common
characteristics [16]. Examples of event types include falls,
medication-related issues, and diagnosis errors [17,18]. PSE
reporting systems may have upwards of 20 categories of events.
The formulation of these classification taxonomies generally
involves systematically grouping PSE reports based on common
characteristics [19]. The descriptions of event types are not

always readily accessible to PSE reporters and patient safety
analysts [15]. Previous studies have found that the classification
of PSE reports is inconsistent depending on the reporter’s
profession, interpretation of the adverse event, and
understanding of the PSE classification taxonomy [15,20].
Furthermore, 25% of PSE reports are labeled with vague or
nonspecific categories such as “miscellaneous” and “other” and
require time-consuming retrospective analysis for
reclassification [21]. These problems are further exacerbated
by the growing volume of PSEs reported [18,22]. For instance,
hospitals in the state of New South Wales in Australia reported
close to 195,000 PSEs in 2020 [23], while there were
approximately 2.3 million PSEs reported to the National
Reporting and Learning System in England from April 2021 to
March 2022 [24].

In light of these challenges, it is imperative to find an efficient
solution to ensure the reliable classification of PSE reports.
Recent studies have used static text representations and
supervised machine learning (ML) techniques to automate the
PSE report classification [17,25,26]. However, static text
representations ignore the ordering of the words and do not
account for the differences in word meaning across different
contexts. These limitations may result in suboptimal
classification performance. With the emergence of deep learning,
contextual text representation produced from transformer-based
deep learning models has achieved state-of-the-art performance
on a wide range of natural language processing tasks, including
text classification [27]. The contextual representation of each
word is based on its surrounding context within the text,
allowing for a more accurate understanding of its usage across
different contexts and facilitating knowledge transfer across
languages [28]. Therefore, using contextual text representation
in training ML classifiers presents a promising opportunity for
achieving a more precise classification of PSE reports.

The integration of ML models into PSE reporting systems has
important implications for human–artificial intelligence (AI)
collaboration, given the roles of the incident reporter (front end)
and patient safety analyst (backend). Various approaches for
using ML classifiers can be developed, including at different
levels of automation; however, unifying the strengths of both
human expertise and AI offers the most promising route for
effective implementation [29-31]. A crucial determinant for
successfully implementing the human-AI collaboration approach
is decision transparency [32,33], which is often referred to as
explainability. Explainability is the concept that an ML model’s
prediction can be explained in a way that human operators can
comprehend and reconstruct the model’s reasoning [33].
Incorporating explainability techniques in human-AI
collaboration is paramount as it facilitates a deeper
understanding of the factors influencing the predictions, thereby
fostering trust and understanding between human experts and
AI systems. Therefore, embedding explainability into the
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human-AI collaboration holds significant potential for enhancing
PSE report classification.

The main aim of this study is to examine the efficacy of
contextual text representation in improving the accuracy of PSE
report classification. To accomplish this, we trained, evaluated,
and compared various ML classifiers with both static and
contextual text representations. Additionally, we developed an
interface to illustrate the integration of the ML classifier in an
event reporting system to support human-AI collaboration for
PSE report classification. Moreover, we enhanced the
explainability of the ML classifiers by using an explainable AI
technique. Furthermore, we have investigated the ML classifier’s
performance under 2 conditions, differentiated by whether the
explanation is valid for the predicted event type. Based on this
analysis, we offer recommendations for optimizing human-AI
collaboration in the context of PSE report classification.

Methods

Data Collection
The data set for this study was obtained from a large academic
hospital located in the Southeastern United States. A total of
861 PSE reports from the labor and delivery and mother-baby
units were extracted from the PSE reporting system from
January 1, 2019, to December 31, 2020. Each PSE report was
assigned to a single event type from a set of 25 classes, such as
complication of the surgery, fall, medication-related, and supply
issues. The ML classifiers were trained exclusively on PSE
reports from the 7 most frequently occurring event types. This
selection was intended to create a more balanced training data
set to reduce sampling bias and the risk of overfitting. The
selected PSE reports used for training ML classifiers constitute
approximately 72.8% (627/861) of the extracted reports (Table
1).

Table 1. Prevalence of patient safety event reports by event type in this study.

Extracted reports (n=861), n (%)Event type

186 (21.6)Care coordination or communication

122 (14.2)Laboratory test

89 (10.3)Medication related

67 (7.8)Omission or errors in assessment, diagnosis, and monitoring

58 (6.7)Maternal

56 (6.5)Equipment or devices

49 (5.7)Supplies

627 (72.8)Total

Data Preprocessing
The free-text section of PSE reports was preprocessed before
feeding into ML classifiers as input features. The preprocessing
procedures include text normalization, feature extraction, data
splitting, and data augmentation (Multimedia Appendix 1
[28,34-39]).

Classifier Training
A range of ML classifiers, including multinomial logistic
regression (MLR), support vector machine (SVM), extreme
gradient boosting, light gradient boosting, random forest (RF),
k-nearest neighbor (KNN), and multilayer perceptron, were
used for the classification of PSE reports. While SVM is a binary
classifier, it is also capable of performing multiclass
classification using the one-versus-one strategy. This involves
treating the multiclass classification problem as a series of binary
classification problems, creating n × (n – 1) / 2 binary classifiers
for each pair of classes, where n represents the total number of
classes, and the final classification is based on the majority vote
of all binary classifiers. Extreme gradient boosting, light gradient
boosting, and RF are tree-based ensemble algorithms that are
commonly used in text classification tasks [17,40]. The KNN
classifier predicts the class of a data point based on the majority
class among its nearest neighbors in the training data set.
Multilayer perceptron is a feedforward neural network consisting

of multiple layers of interconnected neutrons and trained using
backpropagation.

To optimize the performance of ML classifiers, we used the
5-fold cross-validation grid search technique to identify the best
combination of hyperparameters. During this process, a range
of values of important hyperparameters (ie, regularization
strength) is assessed with 5-fold cross-validation. For each
combination of hyperparameters, the training set is randomly
split into 5 distinct folds, and then the ML classifier is trained
and evaluated 5 times, picking a different fold for evaluation
every time and training on the remaining 4 folds. The optimized
combination of hyperparameters is determined based on the
average performance of the classifier on the F1-score across the
5-fold cross-validation runs.

Classifier Evaluation
We evaluated the performance of the trained classifiers on the
testing set with standard classification metrics, including
accuracy, precision, recall, F1-score, and area under the receiver
operating characteristic curve. We also evaluated classifiers on
top-2 accuracy, which measures the proportion of predictions
where the correct event type is among the top 2 highest
probability event types predicted by the classifier. The
definitions and mathematical formulas of the evaluation metrics
are shown in Multimedia Appendix 2. Each of these metrics
provides a distinct perspective on the performance of the
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classifier, and collectively, they offer a comprehensive
understanding of how well the classifier is functioning. Since
we framed PSE report classification as a multiclass text
classification problem, the precision, recall, F1-score, and area
under the receiver operating characteristic curve are computed
for each class and combined using a weighted average where
the weights correspond to the number of data points in each
class.

Development and Assessment of Explainability
As the contextual text representation is generated from
transformer-based neural network, which has a black box nature,
we used the local interpretable model-agnostic explanations
(LIME) technique to analyze the top-performing ML classifier
trained with the contextual text representation. LIME is a post
hoc, local perturbation technique that provides the explanation
for a single prediction. LIME generates perturbed data by
randomly removing words from a text document and trains a
locally explainable model with perturbed data to simulate the
original classifier’s prediction [41]. By measuring how the
classifier’s prediction changes under these perturbations, LIME
reflects the contributions of each word to the prediction. The
importance of each word can then be assessed for a single
prediction, revealing whether the ML classifier has learned to
use relevant words for classifying PSE reports. We used LIME
to generate explanations for the top-performing classifier’s
prediction, specifically by highlighting the words that the
classifier deems influential for the prediction. We presented 3
distinct cases: one where the classifier effectively leveraged
relevant words for accurate prediction, another where it failed
to do so, and a final case that illustrated the explanation for a
misclassification. In addition, we analyzed the top 5 most
prevalent words identified by LIME for each event type.

A total of 2 human factors graduate students were recruited to
assess the quality of the LIME explanations. For each PSE report
in the test data set, the reviewers were asked to determine
independently if any of the highlighted words were relevant to
the predicted event type. Based on these evaluations, the reports
were then categorized into 2 distinct groups: those in which the
highlighted terms were deemed relevant to the predicted event
types and those where they were deemed irrelevant.
Discrepancies were resolved through discussions. The interrater
reliability index (Cohen κ) was calculated to quantify the level
of agreement between the reviewers. The ML classifier’s
accuracy and F1-score were evaluated for these 2 groups of PSE
reports. A subsequent comparison will explore the influence of
explanation quality on prediction reliability.

Interface Development
In the typical workflow of PSE report classification, reporters
need to provide a narrative description of the event as well as
key attributes such as the event type, level of harm, date, and
location of the event. Subsequent to this initial classification,
the patient safety analyst will review the submitted report and
decide if it needs to be recategorized to better reflect the nature
of the event [17,42]. To support efficient and reliable
categorization, the classifier will need to provide reporters with
real-time support during the reporting process. We developed
a PSE reporting interface to illustrate the integration of the ML
classifier and the LIME explainability technique. In the design,
the ML classifier provides multiple high-probability event types
along with explanations for its prediction and allows the user
to select the most appropriate event type. The interface was
developed in Figma [43] and designed using guidance from
previous research on incident reporting systems, including
question type, mandatory and optional questions, and taxonomy
for event type and harm level [44,45].

Ethical Considerations
The study was approved by the Medical University of South
Carolina Hospital’s institutional review board (Pro00105892).
Following data extraction, PSE reports were anonymized in
accordance with privacy regulation guidelines.

Results

Performance Comparison
We evaluated the trained ML classifier’s classification
performance on both static and contextual text representations
(Multimedia Appendix 3). The performance of the
top-performing ML classifier trained with static and contextual
text representations is shown in Table 2. Our results showed
that for static text representation, the MLR classifier trained
with term frequency–inverse document frequency (TF-IDF)
achieved the best performance, with an F1-score of 0.631 and
an accuracy of 66.7% (84/126). On the other hand, for contextual
text representation, the SVM classifier trained with
RoBERTa-base outperformed others, with an F1-score of 0.753
and an accuracy of 75.4% (95/126). The SVM classifier trained
with RoBERTa-base showed a 19.3% elative improvement in
F1-score and a 13% (11/85) relative improvement in accuracy
compared to the MLR classifier trained with TF-IDF for
contextual text representation. In addition, we compared the
accuracy (95/126, 75.4%) and top 2 accuracy (107/126, 84.9%)
of the SVM classifier trained with RoBERTa-base and observed
that 9.5% (12/126) of PSE reports’ true event type was predicted
as the second highest probability event type by the classifier,
which represents 39% (12/31) of misclassified PSE reports.
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Table 2. Performance of top-performing ML classifiers trained with static and contextual text representations.

Top-performing ML model trained with the contextual text
representation

Top-performing MLa model trained with the static text
representation

Metric

Text RepresentationML classifierPerformanceText RepresentationML classifierPerformance

RoBERTa-baseSVMd75.40TF-IDFcMLRb66.67Accuracy (%)

xlm-RoBERTa-baseMLPe88.10TF-IDFMLR85.71Top 2 accuracy (%)

RoBERTa-baseSVM0.757TF-IDFKNNf0.707Precision

RoBERTa-baseSVM0.754TF-IDFMLR0.667Recall

RoBERTa-baseSVM0.753TF-IDFMLR0.631F1-score

aML: machine learning.
bMLR: multinomial logistic regression.
cTF-IDF: term frequency–inverse document frequency.
dSVM: support vector machine.
eMLP: multilayer perceptron.
fKNN: k-nearest neighbor.

Performance on Classifying Individual Event Types
We analyzed the performance of the SVM classifier trained
with RoBERTa-base on individual event types (Table 3). The

F1-score measure for different event types ranged from 0.958
(laboratory test) to 0.400 (omission or errors in assessment,
diagnosis, and monitoring).

Table 3. Performance of support vector machine+RoBERTa-base on the individual event type.

F1-scoreRecallPrecisionEvent type

0.7750.8380.721Care coordination or communication

0.9580.9201.000Laboratory test

0.7430.7220.765Medication related

0.4000.3850.417Omission or errors in assessment, diagnosis, and
monitoring

0.7500.7500.750Maternal

0.6670.6360.700Equipment or devices

0.7370.7000.778Supplies

Figure 1 shows the confusion matrix for the SVM classifier
trained with RoBERTa-base evaluated on the test set. A
confusion matrix is a table that visualizes the performance of a
classifier. The main diagonal value is the number of PSE reports
that have been classified as true event types, whereas
off-diagonal values are the number of PSE reports that have

been wrongly classified. While the classifier was able to classify
the majority of event types of PSE reports correctly, there is a
consistent misclassification of the omission or errors in
assessment, diagnosis, or monitoring PSE report as the care
coordination or communication (coordination) event type.
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Figure 1. Confusion matrix for the testing set evaluation with a support vector machine classifier trained with RoBERTa-base.

LIME-Based Explainability Analysis
We used LIME to evaluate whether the SVM classifier trained
with RoBERTa-base has leveraged informative words for
classification. Figure 2 presents 3 examples of explanations for
the classifier’s predictions. At the top of Figure 2, LIME
identified “ketorolac,” “ibuprofen,” and “doses” from the PSE
report as important words for classifying the report into the
medication-related event type, which is reasonable given the
report’s association with incorrect medication doses. Conversely,
in the middle of Figure 2, LIME highlighted “our,” “handle,”
and “or” from the text as important words for classifying the
report into the equipment or device event type. Although the

predicted event type was correct, the classifier relied on
irrelevant words for the classification. At the bottom of Figure
2, a case of misclassification is shown. LIME highlighted
“pitocin,” “pump,” “available,” and “use” as influential words
for classifying the PSE report into medication-related event
type when it belongs to the equipment class. In addition, for
each event type, we extract the 5 most prevalent words that were
deemed important for the classifier’s prediction across the whole
data set (Table 4). This inclusion of stop words (ie, “was,” “not,”
and “till”) among influential terms, as shown in Table 4,
demonstrated that the classifier does not always rely on relevant
words for making classifications.

JMIR Hum Factors 2024 | vol. 11 | e53378 | p. 6https://humanfactors.jmir.org/2024/1/e53378
(page number not for citation purposes)

Chen et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Local interpretable model-agnostic explanations of support vector machine classifiers trained with RoBERTa-base. MD: medical doctor;
PSE: patient safety event; pt: patient.

Table 4. The 5 most prevalent and important words for each event type were derived from the support vector machine classifier trained with
RoBERTa-base.

Prevalent influential words highlighted by local interpretable model-agnostic explanationsEvent type

requested, delayed, patient, not, followCare coordination or communication

specimen, lab, labels, collection, resultsLaboratory test

patches, doses, orders, medication, pitocinMedication related

warning, patient, was, till, lateOmission or errors in assessment, diagnosis, and monitoring

baby, hysterectomy, stable, pumping, hemorrhageMaternal

instruments, trays, notified, malfunctioning, faultyEquipment or devices

vendor, sterile, available, needed, ORSupplies

After reviewing the LIME explanations for each PSE report in
the test data set, 73.8% (93/126) of the reports were categorized
into a subset where at least 1 highlighted word was deemed
relevant to the predicted event type. The remaining reports
comprised a second subset where no highlighted words were
relevant. The interrater reliability index measured by Cohen κ

between the 2 reviewers was 0.83, indicating substantial
agreement. Table 5 presents the performance of the
top-performing ML classifier for both subsets. For the first
subset, the classifier achieved an accuracy of 84% (78/93) and
an F1-score of 0.825. In contrast, the second subset showed a
classifier accuracy of 52% (17/33) and an F1-score of 0.549.

Table 5. Performance of a top-performing machine learning classifier on reports that have relevant words highlighted and reports with irrelevant words
highlighted.

PSE reports with irrelevant words highlightedPSEa reports with relevant words highlightedMetric

3393Number of PSE reports, n

26.1973.81Percentage of test data set (%)

51.5183.87Accuracy (%)

0.5490.825F1-score

aPSE: patient safety event.

PSE Reporting System Interface
We designed an event reporting interface that integrates both
the ML classifier and the LIME explainability technique. Figure
3 shows the event classification screen, where reporters enter

a narrative description of the event after providing the details
of the event, including date, time, unit, and information about
the patient and reporter. Before describing the event in narrative
form, reporters also choose among factors that contributed to
the incident and the level of harm experienced by the patient.
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Once the reporter enters their narrative and selects the “classify”
button, the system activates the ML classifier. Subsequently,
the interface displays the top 2 most probable event types, along
with their associated probability distributions, in the lower left
section. Simultaneously, the LIME technique will identify
influential words that significantly contributed to the predicted
event type, highlighting these words in green in the upper section

of the dashboard. Based on the predicted event types and words
highlighted for their influence on the prediction, the reporter
may select the most suitable event type from a drop-down menu
located in the lower-right section of the dashboard. Following
this selection, reporters are queried on whether they agree with
the classifier’s prediction, and the collected data can be used to
guide subsequent refinement of the ML classifier.

Figure 3. Interface visualization of a patient safety event report classifier coupled with the local interpretable model-agnostic explanations technique.
MD: medical doctor.

Discussion

Overview
PSE event reporting systems are commonly used in health
systems and hospitals across the world [46]. Data collected in
PSE reporting systems drive quality improvement and patient
safety efforts and supports regulatory reporting requirements
for hospitals. The erroneous classification of PSE reports can
impede the learning capabilities of the PSE reporting system,
leading to suboptimal performance in detecting and preventing
potential patient safety hazards [20]. It can also result in a
substantial time cost for reclassifying PSE reports and
compromise the integrity of a PSE database when analysts are
investigating trends in events to develop effective solutions
[17]. Previous studies have trained ML classifiers with static
text representations for automatic PSE classification
[12,17,25,26]. This study aimed to investigate whether using
contextual text representations can further improve the accuracy
of classifying PSE reports. We trained and evaluated a range
of ML classifiers using both static and contextual text
representations. To the best of our knowledge, this is the first
time that contextual text representation has been used for
training ML classifiers for PSE report classification. We
analyzed the confusion matrix of the top-performing classifier
to identify prevalent misclassified event types. Furthermore,
aiming for more accurate and reliable PSE report classification,
we incorporated an explainability technique to support
human-AI collaboration and designed an interface to illustrate

the possible integration of the ML classifier in PSE reporting
systems.

Principal Findings
In this study, we extensively investigated the potential of using
contextual representation for improving PSE report
classification. The leading classifier trained with the static text
representation (MLR trained with TF-IDF) was able to achieve
an accuracy of 66.7% (84/126). This accuracy considerably
exceeds the baseline accuracy of 29.4% (37/126), which
involves classifying all PSE reports into the majority event type.
However, using contextual text representation proved more
efficacious. The SVM trained with contextual text representation
(RoBERTa-base) was able to achieve an accuracy of 75.4%
(95/126), reflecting a 13% (11/84) relative improvement in
accuracy compared to the best-performing classifier trained
with static text representation. While the achieved accuracy of
75.4% may not appear outstanding in isolation, it represents a
significant advance compared with static text representations and
exceeds the baseline, given the limited size of the data set. The
improvement in classifier performance can be attributed to the
use of contextual text representations, which can capture not
only the meaning of individual words but also the complex and
subtle ways in which words interact with each other in a specific
context. Therefore, contextual text representation overcomes
some limitations of static text representation, which relies
primarily on word frequency and co-occurrence to represent
text. Moreover, contextual text representation does not require
explicit text normalization while also avoiding issues associated
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with high-dimensionality and sparsity commonly found in static
text representations. Hence, when training ML classifiers for
PSE reporting systems, contextual text representation should
be prioritized over static text representation to ensure the highest
level of accuracy in classifying PSE reports.

As part of our investigation, we evaluated the performance of
the top-performing classifier trained with contextual text
representation on individual event types. While the classifier
demonstrated impressive performance in accurately classifying
laboratory test PSE reports (F1-score=0.958), it struggled with
classifying omissions or errors in assessment, diagnosis, and
monitoring PSE reports, resulting in an unsatisfactory F1-score
of 0.400. To investigate this discrepancy, we analyzed the
confusion matrix for the classifier and discovered that omissions
or errors in assessment, diagnosis, and monitoring PSE reports
were frequently misclassified as the coordination event type.
This misclassification can be attributed to the multiclass nature
of PSE reports. For example, a failure to document the removal
of a patient’s epidural catheter (omission or errors in assessment,
diagnosis, and monitoring) could lead to a medication ordered
by a physician (such as Lovenox) being withheld by the
pharmacy due to a complication risk (coordination). On the
other hand, the laboratory test is a more distinct event type in
comparison to the other event types, and the classifier was able
to correctly classify the majority of these reports. The
observation obtained from the confusion matrix implies that
PSE reports can potentially have more than 1 event type. This
finding is consistent with previous studies [25,26]. The finding
also underscores the need for further refinement in the
development of the PSE taxonomy to create more distinctive
event types. Another potential solution for addressing the
multiclass nature of PSEs is to enable multiple event-type
assignments [47]. Alternatively, the ML classifier can provide
several probable event types, allowing the user to select the
most appropriate one. We evaluated the top 2 accuracy of the
top-performing ML classifier trained with contextual text
representation and observed that 39% (12/31) of misclassified
PSE reports’ true event type was predicted as the second-highest
probability event type by the classifier. The finding suggests
that there is a greater chance for the ML classifier to provide
the correct event type when considering multiple options. As
event reporting systems usually encompass over 20 event types,
which can be difficult to memorize or access [17], narrowing
down the PSE report’s potential event types to a smaller range
also reduces the cognitive workload for PSE reporters during
the classification process [48] and enhances the efficiency of
reclassifying PSE reports for patient safety analysts.

We used LIME to showcase 3 predictions’ explanations and
demonstrated cases where the ML classifier used informative
words for classifying the PSE report and where it used irrelevant
words for classification. These results highlight the importance
of not solely relying on the ML classifier’s prediction and
underscore the need for explainability and transparency in using
the ML classifier for PSE report classification. Additionally,
we showed the top 5 most prevalent words the ML classifier
deemed important in the PSE reports for each event type. These
words are indicative of the prevalent themes and issues within
specific event types. Understanding the context and relationships

between these prevalent informative words and specific event
types can potentially provide valuable insights into the factors
contributing to different types of PSEs. Furthermore, we have
evaluated the top-performing ML classifier’s performance on
2 subsets of PSE reports, differentiated by whether the
highlighted word by LIME is relevant to the predicted event
type. Our findings reveal that the majority of PSE reports
(93/126) have at least 1 relevant word highlighted, with the
classifier achieving an accuracy of 84% (78/93) on these reports.
Conversely, accuracy drops to 52% (17/33) when irrelevant
words are highlighted. Such a disparity in performance
emphasizes the necessity for additional scrutiny from reporters
and patient safety analysts, particularly when dealing with PSE
reports that have irrelevant words highlighted.

While previous research has focused on the development of ML
classifiers, none of these previous works have investigated the
potential integration of the classifier within the PSE reporting
system in a manner that aligns with the workflow of the
front-end reporter. We designed an interface to demonstrate the
feasibility of a collaborative human-AI approach for event
categorization. The interface provides the PSE reporter with
multiple probable event types and associated explanations for
the ML classifier’s prediction. This approach aligns with the
principles of level 2 automation, where ML classifiers aids
human decision-making rather than fully automating it [49].
This collaboration optimally combines human expertise with
ML capabilities, potentially reducing cognitive workload and
memorization of the taxonomy while also reducing the risks
associated with overreliance on automation. Numerous studies
have shown that the human-AI collaboration approach can
improve the decision-making process [50-52], indicating its
potential for enhancing PSE report classification. Furthermore,
the interface also integrates the LIME explainability technique,
which offers real-time insights into the rationale for the probable
event types. Given the role of reporters and patient safety
analysts in the incident reporting process, the use of
explainability techniques can also increase trust in the
recommendation provided by the ML classifier as it provides
transparent and interpretable reasoning for the classification
decisions [50,51]. Using LIME to highlight top informative
words in real time for a PSE report can assist PSE reporters by
emphasizing keywords in their narratives that are linked to the
proposed classification. Highlighting informative words can
also facilitate patient safety analysts working at the back end
by providing insights into why a specific event type was chosen
for classification. Such transparency not only clarifies current
recommendations but also guides analysts in identifying
influential terms for future report classifications. Previous
research has illustrated the value of automation transparency in
supporting appropriate levels of trust in the system, including
decision support systems [32]. Additionally, regularly checking
the explanations of the ML classifier’s prediction enables
continuous monitoring of the classifier’s performance,
identification of issues, and refinement [52]. As we have only
designed the interface, additional research is needed to test the
effectiveness of this approach in PSE report classification.
Assessing the interface’s impact on cognitive workload and
decision-making accuracy is essential for ensuring its usability
and adoption in the event reporting system. We plan to undertake
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a usability testing study with health care professionals in a
subsequent study.

Comparison With Previous Work
Research into the use of ML classifiers for the automation of
PSE report classification has been relatively scarce. Wang et al
[26] used logistic regression and SVM with the binary count,
term frequency, and TF-IDF text representation to classify ten
types of PSE reports, reaching an F1-score as high as 0.783.
However, they used a considerably larger data set (n=2860).
Fong et al [17] achieved an accuracy rate of 92.0% (284/309)
when they examined the usage of an ML classifier for
classifying miscellaneous PSE reports using SVM, RF, and
logistic regression with TF-IDF [17]. They also used a much
larger data set (n=70,051). Ong et al [12] investigated the
feasibility of using an ML classifier to automatically classify 2
types of PSE reports, including inadequate clinical handover
and incorrect patient identification. They used Bag of Words
model for text representation and trained both SVM and naive
Bayes on classifying PSE reports, reaching accuracy as high as
98% (364/372). However, they framed the problem as a binary
classification problem, which inherently has a higher baseline
accuracy compared to our investigation. In this study, we’ve
performed an in-depth comparative analysis with the available
PSE data set and compared the established methods of
classifying PSE reports and our novel method of using
contextual text representations for classification. Our findings
reveal that our proposed method outperforms the traditional
models in terms of accuracy (ie, 84/126, 66.7% vs 95/126,
75.4%) and F1-score (ie, 0.631 vs 0.753). This underlines the
significance of our approach and its potential to advance the
field of using ML classifiers for PSE report classification.

Limitations
There are several limitations to this study. First, the PSE reports
used to train the ML classifiers were obtained from the maternal
care units of a single hospital in the United States; therefore,
the classifier might not generalize well to other settings. Second,
this research’s scope was constrained by the limited amount of
PSE report data, and only 7 prevalent classes were incorporated
for training the ML classifiers. The restricted quantity of PSE

reports might also result in an underestimation of the ML
classifier’s actual capabilities [12]. Third, the quality of the
LIME explanations was assessed by 2 graduate students; thus,
further investigation is needed for a more robust validation of
explanation quality. Furthermore, we have not yet empirically
tested the interface for potential decision-making biases it may
introduce.

Future research should investigate the performance of ML
classifiers trained with contextual text representations on a larger
and more diverse data set. Additionally, while we plan to refine
the interface and test whether it supports event classification,
future research can continue to investigate the appropriate way
of incorporating the ML classifier into the reporting and
reviewing workflow of PSE report classification and examine
various human-AI collaboration approaches. Future studies
should explore the potential biases (ie, automation bias) that
the interface may introduce into the analysts’ decision-making
process.

Conclusions
Improving the precision of PSE report classifications is a
multifaceted task, involving both the refinement of the event
type taxonomy and adequate training of hospital staff on the
event reporting system. Despite these challenges, ML classifiers
offer substantial potential to support accurate classification
throughout the reporting and reviewing process. The findings
of this study contribute to the advancement of ML classifiers
for PSE report classification by demonstrating the superior
performance of contextual text representation over static text
representations in achieving more accurate classification
outcomes. The integration of explainability techniques in ML
classifiers fosters trust in their usage and provides valuable
insights for informed decision-making and potential adjustments
to the classifier. An event reporting interface that integrates an
ML classifier with collaborative decision-making capabilities
offers the potential to achieve an efficient and reliable PSE
report classification process. These approaches can ultimately
help hospitals identify risks and hazards promptly and take
timely and informed actions to mitigate adverse events and
reduce patient harm.

Acknowledgments
This research was funded by the Agency for Healthcare Research and Quality (1R03HS027680).

Authors' Contributions
HC was responsible for the conceptualization, data analysis, and drafting of the manuscript. EC contributed to the conceptualization,
methodology design, and review and revision of the document. DW contributed to data acquisition and funding acquisition. MA
contributed to data acquisition, conceptualization, funding acquisition, and the review and revision of the manuscript.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Data preprocessing procedures.
[DOCX File , 14 KB-Multimedia Appendix 1]

JMIR Hum Factors 2024 | vol. 11 | e53378 | p. 10https://humanfactors.jmir.org/2024/1/e53378
(page number not for citation purposes)

Chen et alJMIR HUMAN FACTORS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=humanfactors_v11i1e53378_app1.docx&filename=dddfe3ba3c354a9dccc730b152605e30.docx
https://jmir.org/api/download?alt_name=humanfactors_v11i1e53378_app1.docx&filename=dddfe3ba3c354a9dccc730b152605e30.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


Multimedia Appendix 2
Evaluation metrics for examining patient safety event machine learning classifiers.
[DOCX File , 15 KB-Multimedia Appendix 2]

Multimedia Appendix 3
The performance of machine learning classifiers in classifying patient safety event report event type.
[DOCX File , 20 KB-Multimedia Appendix 3]

References

1. Kohn LT, Corrigan JM, Donaldson MS, Committee on Quality of Health Care in America. To Err Is Human: Building a
Safer Health System. Volume 627. Washington (DC). National Academies Press (US); 2000.

2. Nebeker JR, Barach P, Samore MH. Clarifying adverse drug events: a clinician's guide to terminology, documentation, and
reporting. Ann Intern Med. May 18, 2004;140(10):795-801. [FREE Full text] [doi:
10.7326/0003-4819-140-10-200405180-00009] [Medline: 15148066]

3. Chopard D, Treder MS, Corcoran P, Ahmed N, Johnson C, Busse M, et al. Text mining of adverse events in clinical trials:
deep learning approach. JMIR Med Inform. 2021;9(12):e28632. [FREE Full text] [doi: 10.2196/28632] [Medline: 34951601]

4. Makary MA, Daniel M. Medical error-the third leading cause of death in the US. BMJ. 2016;353:i2139. [FREE Full text]
[doi: 10.1136/bmj.i2139] [Medline: 27143499]

5. Slawomirski L, Auraaen A, Klazinga NS. The Economics of Patient Safety: Strengthening a Value-based Approach to
Reducing Patient Harm at National Level. Paris. OECD Publishing; 2017.

6. Medication without harm. World Health Organization. 2023. URL: https://www.who.int/initiatives/medication-without-harm
[accessed 2023-03-08]

7. Hewitt TA, Chreim S. Fix and forget or fix and report: a qualitative study of tensions at the front line of incident reporting.
BMJ Qual Saf. 2015;24(5):303-310. [FREE Full text] [doi: 10.1136/bmjqs-2014-003279] [Medline: 25749025]

8. Ward JK, Armitage G. Can patients report patient safety incidents in a hospital setting? a systematic review. BMJ Qual
Saf. 2012;21(8):685-699. [FREE Full text] [doi: 10.1136/bmjqs-2011-000213] [Medline: 22562875]

9. Li E, Clarke J, Ashrafian H, Darzi A, Neves AL. The impact of electronic health record interoperability on safety and
quality of care in high-income countries: systematic review. J Med Internet Res. 2022;24(9):e38144. [FREE Full text] [doi:
10.2196/38144] [Medline: 36107486]

10. Vincent C. Incident reporting and patient safety. BMJ. 2007;334(7584):51. [FREE Full text] [doi:
10.1136/bmj.39071.441609.80] [Medline: 17218667]

11. Albolino S, Tartaglia R, Bellandi T, Amicosante AMV, Bianchini E, Biggeri A. Patient safety and incident reporting: survey
of Italian healthcare workers. Qual Saf Health Care. 2010;19(Suppl 3):i8-i12. [FREE Full text] [doi:
10.1136/qshc.2009.036376] [Medline: 20959324]

12. Ong MS, Magrabi F, Coiera E. Automated categorisation of clinical incident reports using statistical text classification.
Qual Saf Health Care. 2010;19(6):e55. [FREE Full text] [doi: 10.1136/qshc.2009.036657] [Medline: 20724392]

13. Herzer KR, Mirrer M, Xie Y, Steppan J, Li M, Jung C, et al. Patient safety reporting systems: sustained quality improvement
using a multidisciplinary team and "good catch" awards. Jt Comm J Qual Patient Saf. 2012;38(8):339-347. [FREE Full
text] [doi: 10.1016/s1553-7250(12)38044-6] [Medline: 22946251]

14. Fong A, Hettinger AZ, Ratwani RM. Exploring methods for identifying related patient safety events using structured and
unstructured data. J Biomed Inform. 2015;58:89-95. [FREE Full text] [doi: 10.1016/j.jbi.2015.09.011] [Medline: 26432354]

15. Brubacher JR, Hunte GS, Hamilton L, Taylor A. Barriers to and incentives for safety event reporting in emergency
departments. Healthc Q. 2011;14(3):57-65. [FREE Full text] [doi: 10.12927/hcq.2011.22491] [Medline: 21841378]

16. Conceptual framework for the international classification for patient safety version 1.1: final technical report January 2009.
World Health Organization. 2010. URL: https://apps.who.int/iris/handle/10665/70882 [accessed 2023-03-08]

17. Fong A, Behzad S, Pruitt Z, Ratwani RM. A machine learning approach to reclassifying miscellaneous patient safety event
reports. J Patient Saf. 2021;17(8):e829-e833. [FREE Full text] [doi: 10.1097/PTS.0000000000000731] [Medline: 32555052]

18. Ngo J, Lau D, Ploquin J, Receveur T, Stassen K, Del Castilho C. Improving incident reporting among physicians at south
health campus hospital. BMJ Open Qual. 2022;11(4):e001945. [FREE Full text] [doi: 10.1136/bmjoq-2022-001945]
[Medline: 36207052]

19. Schrager JD, Schuler K, Isakov AP, Wright DW, Yaffee AQ, Jacobson KL, et al. Development and usability testing of a
web-based COVID-19 self-triage platform. West J Emerg Med. 2020;21(5):1054-1058. [FREE Full text] [doi:
10.5811/westjem.2020.7.48217] [Medline: 32970554]

20. Gong Y, Song HY, Wu X, Hua L. Identifying barriers and benefits of patient safety event reporting toward user-centered
design. Saf Health. 2015;1(1):1-9. [FREE Full text] [doi: 10.1186/2056-5917-1-7]

21. Gong Y. Data consistency in a voluntary medical incident reporting system. J Med Syst. 2011;35(4):609-615. [FREE Full
text] [doi: 10.1007/s10916-009-9398-y] [Medline: 20703528]

JMIR Hum Factors 2024 | vol. 11 | e53378 | p. 11https://humanfactors.jmir.org/2024/1/e53378
(page number not for citation purposes)

Chen et alJMIR HUMAN FACTORS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=humanfactors_v11i1e53378_app2.docx&filename=454f59266c571c846593f775e8638406.docx
https://jmir.org/api/download?alt_name=humanfactors_v11i1e53378_app2.docx&filename=454f59266c571c846593f775e8638406.docx
https://jmir.org/api/download?alt_name=humanfactors_v11i1e53378_app3.docx&filename=8e2cf997b7eabf1e234379e2049e8ec9.docx
https://jmir.org/api/download?alt_name=humanfactors_v11i1e53378_app3.docx&filename=8e2cf997b7eabf1e234379e2049e8ec9.docx
https://www.acpjournals.org/doi/10.7326/0003-4819-140-10-200405180-00009
http://dx.doi.org/10.7326/0003-4819-140-10-200405180-00009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15148066&dopt=Abstract
https://medinform.jmir.org/2021/12/e28632/
http://dx.doi.org/10.2196/28632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34951601&dopt=Abstract
https://www.bmj.com/content/353/bmj.i2139
http://dx.doi.org/10.1136/bmj.i2139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27143499&dopt=Abstract
https://www.who.int/initiatives/medication-without-harm
http://qualitysafety.bmj.com/lookup/pmidlookup?view=long&pmid=25749025
http://dx.doi.org/10.1136/bmjqs-2014-003279
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25749025&dopt=Abstract
https://qualitysafety.bmj.com/content/21/8/685
http://dx.doi.org/10.1136/bmjqs-2011-000213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22562875&dopt=Abstract
https://www.jmir.org/2022/9/e38144/
http://dx.doi.org/10.2196/38144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36107486&dopt=Abstract
https://europepmc.org/abstract/MED/17218667
http://dx.doi.org/10.1136/bmj.39071.441609.80
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17218667&dopt=Abstract
https://qualitysafety.bmj.com/content/19/Suppl_3/i8
http://dx.doi.org/10.1136/qshc.2009.036376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20959324&dopt=Abstract
https://qualitysafety.bmj.com/content/19/6/e55
http://dx.doi.org/10.1136/qshc.2009.036657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20724392&dopt=Abstract
https://europepmc.org/abstract/MED/22946251
https://europepmc.org/abstract/MED/22946251
http://dx.doi.org/10.1016/s1553-7250(12)38044-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22946251&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(15)00204-X
http://dx.doi.org/10.1016/j.jbi.2015.09.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26432354&dopt=Abstract
https://www.longwoods.com/content/22491/healthcare-quarterly/barriers-to-and-incentives-for-safety-event-reporting-in-emergency-departments
http://dx.doi.org/10.12927/hcq.2011.22491
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21841378&dopt=Abstract
https://apps.who.int/iris/handle/10665/70882
https://journals.lww.com/journalpatientsafety/abstract/2021/12000/a_machine_learning_approach_to_reclassifying.27.aspx
http://dx.doi.org/10.1097/PTS.0000000000000731
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32555052&dopt=Abstract
https://bmjopenquality.bmj.com/lookup/pmidlookup?view=long&pmid=36207052
http://dx.doi.org/10.1136/bmjoq-2022-001945
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36207052&dopt=Abstract
https://europepmc.org/abstract/MED/32970554
http://dx.doi.org/10.5811/westjem.2020.7.48217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32970554&dopt=Abstract
https://link.springer.com/article/10.1186/2056-5917-1-7
http://dx.doi.org/10.1186/2056-5917-1-7
https://link.springer.com/article/10.1007/s10916-009-9398-y
https://link.springer.com/article/10.1007/s10916-009-9398-y
http://dx.doi.org/10.1007/s10916-009-9398-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20703528&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


22. Koike D, Ito M, Horiguchi A, Yatsuya H, Ota A. Implementation strategies for the patient safety reporting system using
consolidated framework for implementation research: a retrospective mixed-method analysis. BMC Health Serv Res.
2022;22(1):409. [FREE Full text] [doi: 10.1186/s12913-022-07822-9] [Medline: 35346182]

23. Biannual incident report. Clinical Excellence Commission. URL: https://www.cec.health.nsw.gov.au/Review-incidents/
Biannual-Incident-Report [accessed 2023-05-16]

24. Organisation patient safety incident report up to March 2022. NHS England. 2022. URL: https://www.england.nhs.uk/
publication/organisation-patient-safety-incident-report-up-to-march-2022/ [accessed 2023-03-08]

25. Evans HP, Anastasiou A, Edwards A, Hibbert P, Makeham M, Luz S, et al. Automated classification of primary care patient
safety incident report content and severity using supervised Machine Learning (ML) approaches. Health Informatics J.
2020;26(4):3123-3139. [FREE Full text] [doi: 10.1177/1460458219833102] [Medline: 30843455]

26. Wang Y, Coiera E, Runciman W, Magrabi F. Using multiclass classification to automate the identification of patient safety
incident reports by type and severity. BMC Med Inform Decis Mak. 2017;17(1):84. [FREE Full text] [doi:
10.1186/s12911-017-0483-8] [Medline: 28606174]

27. Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J. Deep learning—based text classification: a
comprehensive review. ACM Comput Surv. 2021;54(3):1-40. [FREE Full text] [doi: 10.1145/3439726]

28. Liu Q, Kusner MJ, Blunsom P. A survey on contextual embeddings. ArXiv. Preprint posted online on April 13, 2020. [doi:
10.48550/arXiv.2003.07278]

29. Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: focus on clinicians. J Med Internet
Res. 2020;22(6):e15154. [FREE Full text] [doi: 10.2196/15154] [Medline: 32558657]

30. Sharma M, Savage C, Nair M, Larsson I, Svedberg P, Nygren JM. Artificial intelligence applications in health care practice:
scoping review. J Med Internet Res. 2022;24(10):e40238. [FREE Full text] [doi: 10.2196/40238] [Medline: 36197712]

31. Sezgin E. Artificial intelligence in healthcare: complementing, not replacing, doctors and healthcare providers. Digit Health.
2023;9:20552076231186520. [FREE Full text] [doi: 10.1177/20552076231186520] [Medline: 37426593]

32. Hemmer P, Schemmer M, Riefle L, Rosellen N, Vössing M, Kühl N. Factors that influence the adoption of human-AI
collaboration in clinical decision-making. ArXiv. Preprint posted online on April 19, 2022. [doi: 10.48550/arXiv.2204.09082]

33. Amann J, Blasimme A, Vayena E, Frey D, Madai VI, Precise4Q consortium. Explainability for artificial intelligence in
healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak. 2020;20(1):310. [FREE Full text] [doi:
10.1186/s12911-020-01332-6] [Medline: 33256715]

34. Devlin J, Chang MW, Lee K, Toutanova K. BERT: pre-training of deep bidirectional transformers for language understanding.
Minneapolis, Minnesota. Association for Computational Linguistics; Presented at: 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies; June 2-7, 2019, 2019;4171-4186;
Minneapolis, Minnesota.

35. Pennington J, Socher R, Manning C. GloVe: global vectors for word representation. Doha, Qatar. Association for
Computational Linguistics; Presented at: 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP);
October 25-29, 2014, 2014;1532-1543; Doha, Qatar. [doi: 10.3115/v1/d14-1162]

36. Models. Hugging Face. 2022. URL: https://huggingface.co/models [accessed 2023-03-09]
37. Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. RoBERTa: a robustly optimized BERT pretraining approach. ArXiv.

Preprint posted online on July 26 2019. [doi: 10.5260/chara.21.2.8]
38. Kumar P, Bhatnagar R, Gaur K, Bhatnagar A. Classification of imbalanced data:review of methods and applications. IOP

Conf Ser Mater Sci Eng. 2021;1099:012077. [FREE Full text] [doi: 10.1088/1757-899x/1099/1/012077]
39. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Int

Res. 2002;16(1):321-357. [FREE Full text] [doi: 10.1613/jair.953]
40. Wang L, Zhang Y, Chignell M, Shan B, Sheehan KA, Razak F, et al. Boosting delirium identification accuracy with

sentiment-based natural language processing: mixed methods study. JMIR Med Inform. 2022;10(12):e38161. [FREE Full
text] [doi: 10.2196/38161] [Medline: 36538363]

41. Ribeiro MT, Singh S, Guestrin C. "Why should I trust you?": explaining the predictions of any classifier. Presented at:
KDD '16: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; August 13-17,
2016, 2016;1135-1144; San Francisco, California. URL: https://dl.acm.org/doi/abs/10.1145/2939672.2939778 [doi:
10.1145/2939672.2939778]

42. Palojoki S, Saranto K, Reponen E, Skants N, Vakkuri A, Vuokko R. Classification of electronic health record-related patient
safety incidents: development and validation study. JMIR Med Inform. 2021;9(8):e30470. [FREE Full text] [doi:
10.2196/30470] [Medline: 34245558]

43. The collaborative interface design tool. Figma. URL: https://www.figma.com/ [accessed 2023-09-24]
44. Delio J, Catalanotti JS, Marko K, Paul C, Taffel M, Ho G, et al. Integrating adverse event reporting into a free-text mobile

application used in daily workflow increases adverse event reporting by physicians. Am J Med Qual. 2020;35(5):374-379.
[FREE Full text] [doi: 10.1177/1062860619891995] [Medline: 31795736]

45. Klemp K, Zwart D, Hansen J, Hellebek T, Luettel D, Verstappen W, et al. A safety incident reporting system for primary
care. A systematic literature review and consensus procedure by the LINNEAUS collaboration on patient safety in primary
care. Eur J Gen Pract. 2015;21(sup1):39-44. [FREE Full text] [doi: 10.3109/13814788.2015.1043728] [Medline: 26339835]

JMIR Hum Factors 2024 | vol. 11 | e53378 | p. 12https://humanfactors.jmir.org/2024/1/e53378
(page number not for citation purposes)

Chen et alJMIR HUMAN FACTORS

XSL•FO
RenderX

https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-022-07822-9
http://dx.doi.org/10.1186/s12913-022-07822-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35346182&dopt=Abstract
https://www.cec.health.nsw.gov.au/Review-incidents/Biannual-Incident-Report
https://www.cec.health.nsw.gov.au/Review-incidents/Biannual-Incident-Report
https://www.england.nhs.uk/publication/organisation-patient-safety-incident-report-up-to-march-2022/
https://www.england.nhs.uk/publication/organisation-patient-safety-incident-report-up-to-march-2022/
https://journals.sagepub.com/doi/10.1177/1460458219833102?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/1460458219833102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30843455&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0483-8
http://dx.doi.org/10.1186/s12911-017-0483-8
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28606174&dopt=Abstract
https://dl.acm.org/doi/10.1145/3439726
http://dx.doi.org/10.1145/3439726
http://dx.doi.org/10.48550/arXiv.2003.07278
https://www.jmir.org/2020/6/e15154/
http://dx.doi.org/10.2196/15154
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32558657&dopt=Abstract
https://www.jmir.org/2022/10/e40238/
http://dx.doi.org/10.2196/40238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36197712&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/20552076231186520?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub  0pubmed
http://dx.doi.org/10.1177/20552076231186520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37426593&dopt=Abstract
http://dx.doi.org/10.48550/arXiv.2204.09082
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-01332-6
http://dx.doi.org/10.1186/s12911-020-01332-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33256715&dopt=Abstract
http://dx.doi.org/10.3115/v1/d14-1162
https://huggingface.co/models
http://dx.doi.org/10.5260/chara.21.2.8
https://iopscience.iop.org/article/10.1088/1757-899X/1099/1/012077/meta
http://dx.doi.org/10.1088/1757-899x/1099/1/012077
https://www.jair.org/index.php/jair/article/view/10302
http://dx.doi.org/10.1613/jair.953
https://medinform.jmir.org/2022/12/e38161/
https://medinform.jmir.org/2022/12/e38161/
http://dx.doi.org/10.2196/38161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36538363&dopt=Abstract
https://dl.acm.org/doi/abs/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
https://medinform.jmir.org/2021/8/e30470/
http://dx.doi.org/10.2196/30470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34245558&dopt=Abstract
https://www.figma.com/
https://journals.sagepub.com/doi/10.1177/1062860619891995
http://dx.doi.org/10.1177/1062860619891995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31795736&dopt=Abstract
https://europepmc.org/abstract/MED/26339835
http://dx.doi.org/10.3109/13814788.2015.1043728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26339835&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


46. Hasegawa T, Fujita S. Patient safety policies experiences, effects and priorities; lessons from OECD member states   (version
2.0). Patient Safety Global Ministerial Summit 2018. 2018. URL: https://www.mhlw.go.jp/psgms2018/pdf/document/
5_Document.pdf [accessed 2023-12-21]

47. Wang Y, Coiera E, Runciman W, Magrabi F. Automating the identification of patient safety incident reports using multi-label
classification. Stud Health Technol Inform. 2017;245:609-613. [Medline: 29295168]

48. Buettner R. Cognitive workload of humans using artificial intelligence systems: towards objective measurement applying
eye-tracking technology. In: KI 2013: Advances in Artificial Intelligence Berlin. Heidelberg. Springer Berlin Heidelberg;
Presented at: 36th Annual German Conference on AI, Koblenz; September 16-20, 2013, 2013;37-48; Germany. [doi:
10.1007/978-3-642-40942-4_4]

49. Berretta S, Tausch A, Ontrup G, Gilles B, Peifer C, Kluge A. Defining human-AI teaming the human-centered way: a
scoping review and network analysis. Front Artif Intell. 2023;6:1250725. [FREE Full text] [doi: 10.3389/frai.2023.1250725]
[Medline: 37841234]

50. Lai Y, Kankanhalli A, Ong DC. Human-AI collaboration in healthcare: a review and research agenda. Presented at: 54th
Hawaii International Conference on System Sciences (HICSS); January 5-8, 2021, 2021; Grand Wailea, Maui, Hawaii.
URL: https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/495a50c0-16e9-4c3e-a00b-34aeec9dff6b/content
[doi: 10.24251/hicss.2021.046]

51. Reverberi C, Rigon T, Solari A, Hassan C, Cherubini P, GI Genius CADx Study Group; et al. Experimental evidence of
effective human-AI collaboration in medical decision-making. Sci Rep. 2022;12(1):14952. [FREE Full text] [doi:
10.1038/s41598-022-18751-2] [Medline: 36056152]

52. Lee MH, Siewiorek DP, Smailagic A, Bernardino A, Bermúdez i Badia S. A human-AI collaborative approach for clinical
decision making on rehabilitation assessment. New York, NY, USA. Association for Computing Machinery; Presented at:
CHI '21: CHI Conference on Human Factors in Computing Systems; May 8-13, 2021, 2021;1-14; Yokohama Japan. URL:
https://dl.acm.org/doi/10.1145/3411764.3445472 [doi: 10.1145/3411764.3445472]

Abbreviations
AI: artificial intelligence
KNN: k-nearest neighbor
LIME: local interpretable model-agnostic explanations
ML: machine learning
MLR: multinomial logistic regression
OECD: Organization for Economic Cooperation and Development
PSE: patient safety event
RF: random forest
SVM: support vector machine
TF-IDF: term frequency–inverse document frequency

Edited by E Borycki, A Kushniruk; submitted 06.10.23; peer-reviewed by H Tibble, S Matathil; comments to author 19.11.23; revised
version received 30.11.23; accepted 03.12.23; published 25.01.24

Please cite as:
Chen H, Cohen E, Wilson D, Alfred M
A Machine Learning Approach with Human-AI Collaboration for Automated Classification of Patient Safety Event Reports: Algorithm
Development and Validation Study
JMIR Hum Factors 2024;11:e53378
URL: https://humanfactors.jmir.org/2024/1/e53378
doi: 10.2196/53378
PMID:

©Hongbo Chen, Eldan Cohen, Dulaney Wilson, Myrtede Alfred. Originally published in JMIR Human Factors
(https://humanfactors.jmir.org), 25.01.2024. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Human Factors, is properly cited. The complete bibliographic
information, a link to the original publication on https://humanfactors.jmir.org, as well as this copyright and license information
must be included.

JMIR Hum Factors 2024 | vol. 11 | e53378 | p. 13https://humanfactors.jmir.org/2024/1/e53378
(page number not for citation purposes)

Chen et alJMIR HUMAN FACTORS

XSL•FO
RenderX

https://www.mhlw.go.jp/psgms2018/pdf/document/5_Document.pdf
https://www.mhlw.go.jp/psgms2018/pdf/document/5_Document.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29295168&dopt=Abstract
http://dx.doi.org/10.1007/978-3-642-40942-4_4
https://europepmc.org/abstract/MED/37841234
http://dx.doi.org/10.3389/frai.2023.1250725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37841234&dopt=Abstract
https://scholarspace.manoa.hawaii.edu/server/api/core/bitstreams/495a50c0-16e9-4c3e-a00b-34aeec9dff6b/content
http://dx.doi.org/10.24251/hicss.2021.046
https://doi.org/10.1038/s41598-022-18751-2
http://dx.doi.org/10.1038/s41598-022-18751-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36056152&dopt=Abstract
https://dl.acm.org/doi/10.1145/3411764.3445472
http://dx.doi.org/10.1145/3411764.3445472
https://humanfactors.jmir.org/2024/1/e53378
http://dx.doi.org/10.2196/53378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

