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Abstract
Background: The exponential growth in computing power and the increasing digitization of information have substantially
advanced the machine learning (ML) research field. However, ML algorithms are often considered “black boxes,” and this
fosters distrust. In medical domains, in which mistakes can result in fatal outcomes, practitioners may be especially reluctant to
trust ML algorithms.
Objective: The aim of this study is to explore the effect of user-interface design features on intensivists’ trust in an ML-based
clinical decision support system.
Methods: A total of 47 physicians from critical care specialties were presented with 3 patient cases of bacteremia in the
setting of an ML-based simulation system. Three conditions of the simulation were tested according to combinations of
information relevancy and interactivity. Participants’ trust in the system was assessed by their agreement with the system’s
prediction and a postexperiment questionnaire. Linear regression models were applied to measure the effects.
Results: Participants’ agreement with the system’s prediction did not differ according to the experimental conditions.
However, in the postexperiment questionnaire, higher information relevancy ratings and interactivity ratings were associated
with higher perceived trust in the system (P<.001 for both). The explicit visual presentation of the features of the ML algorithm
on the user interface resulted in lower trust among the participants (P=.05).
Conclusions: Information relevancy and interactivity features should be considered in the design of the user interface of
ML-based clinical decision support systems to enhance intensivists’ trust. This study sheds light on the connection between
information relevancy, interactivity, and trust in human-ML interaction, specifically in the intensive care unit environment.
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Introduction
Overview
In the intensive care unit (ICU), intensivists make an
extremely high number of decisions. For example, McKenzie
et al [1] found that approximately 100 decisions are made
every morning round. According to Ward et al [2], despite
the continual increase in the number of ICUs, the number of
intensivists remains about the same, resulting in an extremely
high workload. The high rate of decision-making together
with the continuous overload prompts the need for decision
support tools.

Although machine learning (ML) algorithms and systems
serving the medical community are continually increasing,
their adoption into routine health care practice is not
guaranteed [3]. One reason is the complexity of the algo-
rithms, which often leads to clinicians’ lack of trust in such
systems [4]. A multidisciplinary approach may enhance trust,
by considering the human factor, the technological aspect,
and the interaction between them [5]. This study examined
2 human-automation interaction features that emphasize the
importance of the human factor in the design of ML-based
clinical decision support systems (CDSSs).
Clinical Decision Support Systems
To date, many CDSSs are categorized as “expert systems”—
systems that try to imitate the way an ideal physician would
think. These systems generate conclusions based on sets of
rules [6]. In contrast, ML algorithms approach problems in
the opposite way—they generate rules from historical data
[6,7]. ML algorithms are currently being developed in almost
every field of medicine and, in many instances, are already
providing equal or even greater accuracy than physicians (eg,
[8-10]). However, though ML CDSSs can enhance the quality
of care, the adoption of such systems in all medical fields, and
specifically in critical care, remains low [11].

In contrast to expert systems, ML algorithms are complex,
and understanding and explaining the reasoning underlying
them is often impossible [12]. Thus, ML algorithms are
frequently considered black box algorithms. This fosters
physicians’ distrust and skepticism of ML systems [13] and
has been suggested as a major cause of the low rates of
adoption and acceptance of these systems within the medical
community [14]. Wrong decisions made by intensivists can
result in severe and even fatal outcomes. Thus, they may be
reluctant to share their decision-making responsibilities with
black box CDSSs that they do not understand [11].
Interpretable ML
As ML algorithms are developed to serve humans, human
interaction with them must be considered. One approach
to move from a “black box” to a “clear box” [15] lies in

the growing field of interpretable ML [16-19]. Miller [20]
offered an approach that combines artificial intelligence,
social science, and human-computer interaction (HCI). He
referred to “human–agent interaction” as the intersection of
these 3 domains, including it as part of the interpretable ML
field. Impressive work has been performed on interpretable
ML in the HCI community (eg, [21-24]). Unfortunately, the
ML community and the HCI community do not always work
together [25]. This results in poor usability of many interpret-
able ML algorithms [20], yet opens an opportunity for HCI
and interaction design researchers to seek means of enhancing
trust in ML CDSSs [26].
Human-Automation Trust
Parasuraman and Riley [27] defined automation as a
technology that executes “a function that was previously
carried out by a human.” This wide definition covers all
kinds of machines, computers, and applications of artificial
intelligence. Human-automation trust is a well-studied subject
(eg, [28-34]). In the context of human social interactions,
trust can be defined as “the willingness to be vulnerable
to the actions of another person” [35]. Research has shown
that humans perceive computers as social actors and may
interact with them as they would with each other [36-38]. The
interaction between humans and automated systems, or, in the
context of this study, intensivists and black box algorithms,
has also been shown to be substantially influenced by trust
[31].

Although human-automation trust is being researched
by many disciplines, no dominant model or approach has
been determined for its measure. However, a well-accepted
conclusion is that trust is not a standalone construct, but
rather multidimensional [32]. In this study, we used the
definition of Lee and See [29] for human-automation trust “an
attitude that an agent will help achieve an individual’s goals
in a situation characterized by uncertainty and vulnerability.”
This definition corresponds well with the interaction between
intensivists and ML CDSSs, even though the ICU environ-
ment is characterized by high levels of both uncertainty and
vulnerability.

According to Madsen and Gregor [30], human-computer
trust is comprised of 2 main dimensions—cognition-based
trust (CBT) and affect-based trust (ABT). CBT is based on
the user’s intellectual perceptions of the system’s characteris-
tics, while ABT is based on the user’s emotional responses
to the system. The 2 dimensions can be further subdivided.
CBT is comprised of the understandability of the system
and the technical competence of the system, whereas ABT
is comprised of faith, personal attachment, and reliability.
Madsen and Gregor [30] note that reliability was also found
to influence CBT, although its influence on ABT is stronger.
The researchers suggested a questionnaire for measuring trust,
which we implemented in this study (Figure 1).
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Figure 1. Madsen and Gregor’s [30] human-computer trust model.

Aim
The primary aim of this study was to investigate the influence
of elements of the user interface (UI) design on intensivists’
trust in ML-based CDSSs (“black-box”–based algorithms).
From the many UI elements that can be modified, the 2 that
were chosen and compared are information relevancy and
interface interactivity.

The literature is abundant regarding information relevancy,
interactivity, and trust, as well as the influence of the 2 former
factors on the latter. However, to the best of our knowledge,
no research has assessed connections between information
relevancy, interactivity, and trust in the context of human-ML
interaction, specifically in the context of the ICU environ-
ment.
Hypothesis 1: Information Relevancy
Information relevancy concerns the degree to which users
perceive that the information content of a system meets their
needs [39]. This factor was found to positively influence user
satisfaction with websites [39,40] and users’ trust in health
infomediaries [41]. Relevant information has been found to
be an attribute that is more crucial for users than usability and
convenient use of the system [42]. Considering the above, our
hypothesis is as follows:

• Higher levels of information relevancy will lead to
higher levels of trust in the system. [H1]

Hypothesis 2: Interface Interactivity
Interactivity can be defined in various ways. For this study,
we used a common definition by Steuer [43]—“the extent
to which users can participate in modifying the format and
content of a mediated environment in real time.” Interactivity
is considered to strongly influence users’ experiences during
the interaction [44] and is key to the success of e-commerce
websites [45-47]. Interactivity was found to increase users’
trust in websites in general and specifically in e-commerce,
mobile commerce [48,49], and brand loyalty [44]. Although
most of the literature on interactivity has focused on e-
commerce trust and intentions to use websites, we expec-
ted greater interface interactivity to positively influence the
interaction between ML CDSSs and intensivists, and to
enhance their trust. Considering the above, our hypothesis is
as follows:

• Higher levels of interface interactivity will lead to
higher levels of trust in the system. [H2]

Methods
Overview
To test the hypotheses, a laboratory experiment with 3
conditions was designed. This enabled testing the effects
of information relevancy and interactivity on intensivists’
trust in a simulated ML-based bacteremia prediction system.
Bacteremia is a common phenomenon in ICUs, that clinicians
need to identify and respond to [50]. Thus, a decision support
system that assists clinicians in identifying this condition
can serve as a good reference for generalizing and deriving
implications for the UI design of many ML-based CDSSs.
Each experimental condition was characterized by a different
set of UI. The effects were measured with both a behavioral
measure (the participants’ decisions that were captured by the
simulation software) and a postexperiment questionnaire that
captured their perceived understanding of the system.
Participants
The participants were 47 physicians (female: n=14; male:
n=33) from critical care specialties of 5 tertiary hospitals in
Israel. They were recruited through a convenience sample of
on-duty physicians and were free to withdraw from the study
at any time. The experiment was conducted for 1 month,
between the first and second COVID-19 lockdowns in Israel.
All the participants were compensated with a gift card (US
$15) and there were no exclusion criteria except for being a
critical care physician.
Ethical Considerations
This research complied with the American Psychological
Association Code of Ethics and was approved by the
institutional review board at Ben-Gurion University of the
Negev (21-12-19). Informed consent was obtained from each
participant.
Experimental Design
To test the hypotheses, a 2×2 (relevant/nonrelevant×inter-
active/noninteractive) between-subjects fractional factorial
experiment was designed. The experiment included 3
conditions (as shown in Table 1). The 15‐16 participants were
randomly assigned to 1 of the 3 conditions; the duration of
their performance was not limited. A total of 3 clinical cases
of patients who were hospitalized in an ICU with medical
conditions implying bacteremia onset were extracted. The
presentations of these cases were designed by 3 experienced
intensivists to provide accurate context.
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Table 1. The experimental conditions.
Noninteractive Interactive

Nonrelevant information 1 —a
Relevant information 2 3

aNot tested.

Apparatus and Stimuli
A total of 3 UIs that represent 3 medical conditions were
designed using Axure RP software (version 9.1; Axure
Software Solutions, Inc). The interfaces were imitating an
ML bacteremia prediction system. The system, which at the
time of the study was still in its development stage, provides
prediction and a list of the main features that were significant

for the prediction algorithm. The right section of all the
interfaces presented similar time-series charts. The charts
included trends over time for the 10 clinical measures that are
most related to bacteremia prediction. The information that
was presented in the left section was manipulated to match
the 3 conditions. An example of an interface (condition 2) is
shown in Figures 2-4.

Figure 2. The right section shows the time-series chart, and the left section shows the patient's current clinical measures. HR: heart rate; ICU:
intensive care unit; MAP: mean arterial pressure; RR: respiratory rate; WBC: white blood cell count.

Figure 3. The bacteremia prediction system calculates the result. HR: heart rate; ICU: intensive care unit; MAP: mean arterial pressure; RR:
respiratory rate; WBC: white blood cell count.
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Figure 4. The bacteremia prediction system presents its prediction. HR: heart rate; ICU: intensive care unit; MAP: mean arterial pressure; RR:
respiratory rate; WBC: white blood cell count.

The information relevancy level was set by the type of
clinical measurements that were presented in a table in the left
section of the chart. For the relevant information conditions,
the information presented in the table comprised the current
values of the same clinical measures that clinicians usually
use to assess a patient’s condition. In addition, the normal
range of each measure was presented. In the nonrelevant
information condition, the information presented in the table
comprised the values of the 10 features that were ranked as
most important by the bacteremia ML prediction algorithm
for making the prediction. Although these features were most
significant for the prediction algorithm, they were not usually
used by clinicians and, therefore, were considered nonrele-
vant (see Figure 5).

The interface interaction level was set by the type of
interaction that the participants were assigned with the UI.

In the interactive condition, the participants were required
to enter values of the patient’s current clinical measures
(the values provided in the written clinical case) before they
could explore the other charts and information. Entering and
copying values to and from the patient record is a common
task clinicians apply in a subset of the IT systems in the ICU.
In the noninteractive conditions, the information about the
patients appeared right away, and the participants could only
explore the information and ask the system for its prediction
(see Figure 6).

The fourth combination, nonrelevant information and
interactivity, was not tested, as in the nonrelevant informa-
tion condition, the information that was presented was of
the features of the algorithm. Thus, including the algorithm
features in the clinical case and entering them into the UI
would seem unrealistic.
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Figure 5. The relevant and nonrelevant conditions. The top frame shows the relevant information condition with the patient's current clinical
measures; the bottom frame shows the nonrelevant information condition with the values of the algorithm's most important features. ArtBPD:
arterial line blood pressure; HR: heart rate; ICU: intensive care unit; MAP: mean arterial pressure; PEEP: positive end-expiratory pressure: P/F ratio:
PaO2/FIO2: oxygen arterial pressure to percentage of inspired oxygen ratio; RR: respiratory rate; WBC: white blood cell count.
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Figure 6. The interactive and noninteractive conditions. The top frame shows the noninteractive condition. The bottom frame shows the interactive
condition, in which participants had to actively engage with the UI and provide the patient's current clinical measures, before they could explore the
other charts and information. HR: heart rate; ICU: intensive care unit; MAP: mean arterial pressure; RR: respiratory rate; UI: user interface: WBC:
white blood cell count.

Procedure
The participants were introduced to the purpose of the
study and received an explanation about the ML bactere-
mia prediction system. They were then introduced to the
simulation software, with the UI fitting the condition they
were assigned. The participants were asked to first read
the clinical case, and only then to explore the UI. After
exploring the UI, they could click on the “calculate algo-
rithm result” button to receive the algorithm’s prediction.
The predictions that were presented to the participants were
accurate. Participants in the interactive condition had to enter

the values of the patient’s current clinical measures before
the system calculated the algorithm result. All the partici-
pants were asked to handle the information as though they
were taking the described patient under their care, and the
information provided was all that was available to them.

After the algorithm presented its prediction, the partici-
pants could continue to explore the UI and the information
presented, and then answer whether they agreed with the
algorithm’s prediction or not. After answering this question,
they proceeded to the same procedure with two additional
clinical cases. To avoid order bias, counterbalancing was
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used. The number of times participants agreed with the
system’s prediction represents their reaction to the system.
Postexperiment Questionnaires
After completing the 3 clinical cases, the participants
answered 2 demographic questions about their experience
and gender and 3 questionnaires about their trust in the
system, the interactivity of the system, and the information
relevancy of the system. The postexperiment questionnaires
measured perceived understanding of the system. These
consisted of the AIMQ (AIM quality) questionnaire [51] to
measure information relevancy, 7 items from an interactivity
questionnaire [44] that assessed interactivity, and 14 items

from a questionnaire that assessed trust [30]. The latter
questionnaire associated the CBT subdimensions of under-
standability, technical competence, and reliability from the
human-computer trust questionnaire. All the questionnaires
used a 7-point Likert scale (1=low and 7=high). See Table
2 for the entire list of the variables. To control for possible
variance, the gender and years of experience of the partici-
pants were recorded. These analyses were performed because
studies have shown a significant impact of gender [5,28,52]
and years of experience [29,53] on the interaction of humans
with automation, and a consequent influence on the develop-
ment of human-automation trust. The questionnaire questions
are presented in Multimedia Appendix 1.

Table 2. The experiment variables.
Construct Scale How it was measured
Years of experience Continuous Demographics
Gender Nominal Demographics
UIa level of information relevancy Binary By design
UI level of interactivity Binary By design
Information relevancy rating Discrete (1-7) AIMQb questionnaire [51]
Interactivity rating Discrete (1-7) McMillan and Hwang [44]
Understandability Discrete (1-7) HCTc; Medsen and Gregor [30]
Technical competence Discrete (1-7) HCT; Medsen and Gregor [30]
Reliability Discrete (1-7) HCT; Medsen and Gregor [30]
Cognitive-based trust Discrete (1-7) HCT; Medsen and Gregor [30]
Agreement with the system Discrete (0‐3) Simulation software

aUI: user interface.
bAIMQ: AIM quality.
cHCT: human-computer trust.

Data Analysis
To measure the participants’ immediate reaction to the
system, the participants were grouped by the number of times
they agreed with the system’s prediction. This information
was compared with their information relevancy rating. Due to
the different group sizes, the Welch test was used to conduct
the comparisons.

A linear regression model was used to assess the influ-
ence of several variables on trust as a single construct
(cognitive-based trust). Although the 2 study hypotheses
aimed to identify the main effects of information relevancy
and interactivity on trust, variables 1‐6 (years of experi-
ence, gender, UI level of information relevancy, UI level of
interactivity, information relevancy rating, and interactivity
rating) were included in the model to control for possible
variance. Interactions were assessed on gender and years of
experience with all the other variables.

Three linear regression models were used to assess the
effect of CBT subdimensions. Variables 1‐6 were included
in the models to control possible variance. Interactions were

assessed on gender and years of experience with all the other
variables.

Results
Participants’ Agreement With the
System’s Prediction
The conditions of the experiments (variables 3 and 4; Table 2)
were not found to be associated with the participants’ trust in
the system. However, participants’ responses to the postex-
periment questionnaires reveal significant findings. Overall,
the higher the participants rated information relevancy, the
more frequently they agreed with the system’s prediction.
Information relevancy was rated significantly higher among
those who agreed 3 times with the system’s prediction
compared to those who did not agree at all (t11=–3.924,
2-tailed; P=.05). No other comparisons between the groups
were significant (see Figure 7). Participants’ agreement with
the system’s prediction did not differ according to their
experience, gender, or the interactivity ratings of the system.
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Figure 7. Box plot of the information relevancy ratings and the number of times participants agreed with the system’s prediction. A significant
difference was found between participants who agreed with all the system’s prediction and participants who did not agree at all.

Trust as a Single Construct
The significant main effect for the UI level of informa-
tion relevancy revealed that relevant information resulted
in higher perceived trust (β=2.684; P=.05). Higher informa-
tion relevancy ratings (β=.824; P<.001) and higher inter-
activity ratings (β=.613; P<.001) were associated with
higher perceived trust in the system. A significant interac-
tion between UI level of interactivity and years of experi-
ence (β=–.056; P=.05) revealed lower trust ratings among
experienced participants with higher interactivity ratings. The
adjusted R2 of the regression model was 0.5296.

CBT Subdimensions
A significant main effect was observed for the UI level
of information relevancy and technical competence (β=4.5;
P<.001). In addition, across all the models, significant main
effects for information relevancy ratings and interactivity
ratings were observed. The statistical measures are summar-
ized in Table 3. No other significant main or interaction
effects were observed across the subdimensions.

Table 3. Statistics for the subdimensions of the cognition-based trust (CBT) dimension.
CBT subdimension βinformation relevancy ratings Pinformation relevancy ratings βinteractivity ratings Pinteractivity ratings
Technical competence 1.18 <.001 .6 <.001
Understandability .4 <.001 .53 <.001
Reliability .72 <.001 .53 <.001

Discussion
Principal Findings
Trust is difficult to measure. Participants’ agreement with the
system’s prediction did not differ according to the experimen-
tal conditions. However, in the postexperiment questionnaire,
higher information relevancy ratings and interactivity ratings
were associated with higher perceived trust in the system,
and the explicit visual presentation of the features of the ML
algorithm on the user interface resulted in lower trust by the
participants.
Information Relevancy
The results of our experiment revealed that information
relevancy plays an important role in operators’ trust
in ML-based systems. Two different, but complementary

questions were addressed and they are (1) to what extent
does relevant information enhance intensivists’ trust in
ML-based CDSSs? and (2) what type of information do
intensivists consider to be relevant? The answer to the
first question is derived directly from the results—perceived
relevant information is important and affects various aspects
of the operators’ trust in the system. This finding sup-
ports the first hypothesis and corroborates studies from
diverse domains, which found that information relevancy
substantially influences users’ trust in technological systems
[41,54,55].

Regarding the second question, discerning the type
of information that intensivists consider relevant is more
complicated. As hypothesized, providing detailed information
about the algorithm’s features decreased the participants’ trust
in the system. A possible explanation for the decreased trust
is that the participants found the detailed information about
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the ML algorithm confusing and irrelevant. Accordingly, the
information about the ML algorithm may have supported the
participants’ belief that they were dealing with a black box
algorithm, and this, in turn, may have fostered distrust of the
system [13].

Across all the CBT subdimensions assessed (understanda-
bility, technical competence, and reliability), the greater the
relevancy of the information presented in the UI, according to
the participants, the higher their trust. This concurs with the
analysis of trust as a standalone construct and thus supports
the first hypothesis.

The understandability and reliability ratings were not
found to differ significantly between the information
relevancy conditions. This suggests that the presentation of
ML features did not significantly decrease the participants’
ratings of understandability and reliability. However, ratings
of technical competence did differ between the information
relevancy conditions. This could indicate a stronger effect on
trust, in the technical competence subdimension, compared to
understandability and reliability.
Interactivity
The participants’ trust ratings were not found to differ
significantly between conditions. However, trust ratings
increased as participants’ perception of UI interactivity
increased. This finding supports the second hypothesis and
is in line with a meta-analysis by Yang and Shen [56],
which concluded that perceived interactivity was much more
effective than objective interactivity.

Two possibilities arise to explain the gap between
participants’ perceptions of the interactivity and the actual
UI level of interactivity. First, within the 2 interactivity levels,
the objective gap between the different conditions may not
have been strong enough. The less interactive condition also
forced 2-way communication between the participants and the
UI. Possibly, the initial user engagement did not add enough
interactivity to render a noticeable difference. Alternatively,
the participants may not have perceived increased interactiv-
ity. Second, although entering and copying values to and from
the patient record is a common task clinicians must apply
in a subset of the IT systems in the ICU, participants may
have considered that manually entering the patient’s clinical
measures was dull or redundant. This could have reduced
participants’ opinion of the system and led to lower trust
ratings.

Although more interactive perceptions of the UI were
associated with higher trust ratings, it is arguable whether
extreme levels of interactivity are always preferable. Kalet
et al [57] investigated the influence of different interactivity
levels in a computer-assisted instruction system on medical
students’ performances. They found that a mid-range UI level
of interactivity maximized improvements in the performance
of clinical skills. Yang and Shen [56] found that extremely
high levels of website interactivity were less effective than
moderate levels. However, pinpointing the exact amount
of moderate interactivity, universally or specifically for a
domain, is challenging. Furthermore, treating interactivity as

a continuous variable and fitting it into a linear regression
model could lead to measurement and interpretation errors.
According to Yang and Shen [56], interactivity should be
considered as a curvilinear variable, with the peak at the
center of the curve and not at the edges. When fitting a
linear regression model to an interactivity variable, the latter
is considered linear, but this is not always the case. This
approach may fail to capture the real influence of different
levels of interactivity.

Across the 3 CBT dimensions examined (understandabil-
ity, technical competence, and reliability), the more interac-
tive the UI, according to the participants’ perception, the
higher their trust. This was precisely the situation when
trust was analyzed as a standalone construct. Otherwise, the
interactivity levels examined were not found to differ between
the CBT dimensions. Notably, a linear regression model was
set for each subdimension. Although the results showed that
the more interactive the UI, the higher the ratings for each
subdimension, moderate levels of interactivity may have had
a greater effect on those subdimensions.

Finally, the literature is scant regarding correlations
between experience and interactivity, and additional research
is needed to elaborate on the significant negative interaction
across years of experience and interactivity ratings.

Limitations and Future Research
Some limitations of this study represent opportunities for
future research. First, the study design, limited resources, and
the period the study was conducted (between the first and
second waves of the COVID-19 pandemic) posed limitations
on participant recruitment. The limited sample size dictated
a design with only 2 levels of each variable. Future research
should explore advanced and more realistic UI interactions
and different information types. Second, although Madsen
and Gregor’s [30] approach was used to analyze trust, the
ABT dimensions were not explored. Such investigation is
needed to obtain a wider view of the relations between trust
and its subdimensions, both cognitive-based and affect-based.
Third, due to time limitations, the study did not evaluate
participants’ attitudes and changes in trust in the system
over time. Finally, the study was performed in a simulation
environment, using a specific interface design, and using case
studies rather than real-time data from patients. Investigating
clinician collaboration with a variety of interface designs,
within real-world information systems used in diverse health
care settings could yield a deeper understanding of future
interface design.

Conclusions
Developing ML algorithms is only the first step toward
improving medical treatment. To increase acceptance and
trust of ML-based CDSSs, and expand their use, a broader
and more multidisciplinary approach (eg, user-centered
design) should be taken. This approach needs to be spe-
cifically evaluated in the health care work environment,
considering its unique challenges and professional person-
nel. A better understanding of means to increase intensi-
vists’ trust in ML-based CDSSs may open new opportunities
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for user-centered design and improved decision-making
processes in the ICU.

Human factor studies, like this one, highlight the impor-
tance of understanding the effect of specific UI features when
designing ML-based CDSS and other “artificial intelligence”
systems. This study focused on the effects of 2 UI fea-
tures related to intensivists’ trust in ML-based CDSSs. We
demonstrated that the level of relevancy of the information
that is presented in the UI and the interactivity level of the
UI can play major roles when designing ML-based CDSSs.
However, to enhance trust in these systems, more UI features
should be investigated.

A wide point of view on trust should be maintained. In
this study, trust as a standalone construct was influenced
significantly by the different information relevancy levels
in the tested conditions. Of the CBT subdimensions, only
technical competence was influenced in the same way. These
findings emphasize the need to analyze trust from differ-
ent perspectives. For the research community and system
designers, this may promote a broad understanding of means
to enhance and foster trust in ML-based CDSSs, as well as in
other “artificial intelligence” systems.
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