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Abstract

Background: The emergence of smartphones has sparked a transformation across multiple fields, with health care being one
of the most notable due to the advent of mobile health (mHealth) apps. As mHealth apps have gained popularity, there is a need
to understand their energy consumption patterns as an integral part of the evolving landscape of health care technologies.

Objective: This study aims to identify the key contributors to elevated energy consumption in mHealth apps and suggest methods
for their optimization, addressing a significant void in our comprehension of the energy dynamics at play within mHealth apps.

Methods: Through quantitative comparative analysis of 10 prominent mHealth apps available on Android platforms within the
United States, this study examined factors contributing to high energy consumption. The analysis included descriptive statistics,
comparative analysis using ANOVA, and regression analysis to examine how certain factors impact energy use and consumption.

Results: Observed energy use variances in mHealth apps stemmed from user interactions, features, and underlying technology.
Descriptive analysis revealed variability in app energy consumption (150-310 milliwatt-hours), highlighting the influence of user
interaction and app complexity. ANOVA verified these findings, indicating the critical role of engagement and functionality.
Regression modeling (energy consumption = β  + β₁ × notification frequency + β₂ × GPS use + β₃ × app complexity + ε),
with statistically significant P values (notification frequency with a P value of .01, GPS use with a P value of .05, and app
complexity with a P value of .03), further quantified these bases’ effects on energy use.

Conclusions: The observed differences in the energy consumption of dietary apps reaffirm the need for a multidisciplinary
approach to bring together app developers, end users, and health care experts to foster improved energy conservation practice
while achieving a balance between sustainable practice and user experience. More research is needed to better understand how
to scale-up consumer engagement to achieve sustainable development goal 12 on responsible consumption and production.
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Introduction

Background
Nations worldwide and researchers from various disciplines are
increasingly focusing on sustainable and energy-efficient
techniques for energy production. The works of Bhaskar et al
[1], Muthanna et al [2], and Ashfaq et al [3] exemplified the
innovative approaches being developed in this domain,
highlighting the significance of renewable energy applications,
unmanned aerial vehicle path scheduling in the Internet of
Things, and secure energy trading with machine learning and
blockchain technology, respectively. In today’s health care
scene, smartphones stand as crucial companions, seamlessly
connecting the realms of technology and wellness promotion.
The surge in popularity of mobile health (mHealth) apps reflects
a broader movement toward adopting energy-smart habits in
all facets of mobile computing. This trend underscores the

pivotal role of crafting sustainable software to lessen our
ecological footprint, a goal echoed by the strides made in green
computing and energy-saving innovations [4-6]. These apps
mark a transformative step toward digital health, empowering
people to proactively manage their health journeys. The growing
focus on energy efficiency and the adoption of eco-friendly use
habits emphasize the significance of these apps. Research by
Choi et al [7] and Pop et al [8] shed light on the essential role
that energy-efficient software plays in prolonging the lifespan
of devices and mitigating environmental impacts, heralding a
significant shift in digital health practices. The fusion of
wearable technologies with these apps further highlights the
importance of designing with energy mindfulness at the
forefront, ensuring that our pursuit of health does not lead to
unsustainable energy use. Table 1 illustrates the relationship
between the popularity of mHealth apps and their user review
scores. Apps with the highest user satisfaction were selected in
this study to be assessed for energy efficiency.

Table 1. Correlation between app popularity, where popularity is determined by the number of downloads.

User review (out of 5)Downloads (in millions)App name

4.42Ate Food Journal

4.25Calorie Counter

4.610Lifesum

4.48My Plate

4.445MyFitnessPal

4.215Noom

4.03Ovia

4.61PlateJoy

4.24Spokin

4.620Yummly

Problem Statement
Even though mHealth and nutrition apps have become
increasingly popular, there is a dearth of research on how much
energy they are consumed on Android devices and practical
guidance on what can users do about it. Almasri and Gouveia
[9] studied the gap in sustainable practice using Android apps
and highlighted the need given their popularity and potential
for energy-saving practice and given the global priority and
commitment toward creating sustainable smartphones to achieve
sustainable development goal 12.

Objective
The objective of this study is to assess the energy consumption
of popular mHealth and nutrition apps and identify key areas
where improvements can be made.

Literature Review

mHealth Apps and Energy Consumption
The widespread use of mHealth apps in our everyday routines
has underscored the need to better understand energy
consumption. Awais et al [10] examined the direct link between
the complexity of these apps and their energy demands. Their

findings indicate that apps with advanced features, such as
real-time monitoring and personalized recommendations, can
consume up to 30% more energy compared with simpler apps.
Additionally, Sahar et al [11] provided an in-depth analysis of
how unnoticed background activities, such as continuous data
syncing and location tracking, play a significant role in draining
smartphone batteries. Their study revealed that background
activities could account for up to 40% of an app’s total energy
consumption, underscoring the importance of both developers
and users to understand the app architecture and appreciate the
influence it plays on energy use.

User Behavior and Energy Efficiency
Understanding energy efficiency warrants an understanding of
user behaviors around app use. Personal relationships, belief in
one’s abilities as presented by Rahman et al [12] (self-efficacy),
and the collective confidence in our shared power to effect
change are key to embracing and consistently using mHealth
technologies [13-15]. How individuals use mHealth apps has a
significant impact on energy consumption patterns. Al Nidawi
et al [16] showed that regular app use, including entering data
and syncing, significantly increases energy consumption. Acer
et al [17] highlighted how notifications, a common feature in
mHealth apps, significantly boost energy use.
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Strategies for Energy Optimization
Isuwa et al [18] showed that using adaptive brightness settings
and energy-saving modes can extend the battery life of mobile
devices by up to 20%. Furthermore, Benkhelifa et al [19]
explored the potential of leveraging software-defined networking
for energy optimization in mobile cloud computing, resulting
in a decrease of up to 25% in energy use.

Technological Advancements and Energy Consumption
Emerging technologies play a nuanced role in the story of
mHealth apps’energy consumption, presenting a mix of hurdles
and breakthroughs. On the one hand, advancements in app
development frameworks, as outlined by Kelényi et al [20],
opened fresh opportunities for energy efficiency. On the other
hand, the growing complexity of those apps, as pointed out by
Porter [21], introduces significant obstacles to keeping energy
use in check. The potential of artificial intelligence (AI) in
optimizing energy consumption for sustainability has been
highlighted in a recent article by Ericsson [22]. Their research
indicates that AI features, while enhancing app functionality,
can lead to a 25% increase in energy consumption if not
optimized properly.

Cross-Platform Analysis of Energy Consumption
Khan et al [23] conducted a comparative analysis of power
consumption in mobile devices to inform the development of
energy-efficient mobile apps. Their study introduced a
methodology for assessing and evaluating power use, providing
valuable insights and guidelines for developers aiming to create
more sustainable mobile apps. Ciman and Gaggi [24] analyzed
smartphone energy consumption using different sensors,
including either only app, or by using GPS, accelerometer,
compass, camera, or microphone. They found that
cross-platform frameworks significantly increase energy
consumption compared with native apps. They suggested that
power consumption should be considered when choosing
between native implementation and using a framework or
between different frameworks for mobile app development.

Energy Consumption Metrics and Measurement
Techniques
Ergasheva et al [25] explored metrics of energy consumption
to evaluate the energy efficiency of apps. They introduced
metrics, such as energy-per-function, which quantifies the
energy consumed for each app function, and energy-per-user
interaction, which measures the energy used per user interaction,
providing a more granular understanding of app energy
consumption. Pathak et al [26] used advanced methods for
tracking app energy consumption in real time, offering insights
into the variables that drive energy use. They developed a
real-time energy monitoring framework that captures detailed
energy use data at the component level, enabling developers to
identify energy hotspots within the app. This approach allows
for more targeted energy optimization strategies, focusing on
the most energy-intensive components and interactions.

Methods

Ethical Considerations
The approach we took was a quantitative analysis study
measuring energy use in popular US-based health and nutrition
apps. This study did not require ethics board approval as it
involved the quantitative analysis of publicly available data
related to the energy consumption of mHealth apps. No human
subjects were directly involved, and no personal or sensitive
data were collected during the study. This approach aligns with
the institutional guidelines and adheres to regional and local
policies regarding research involving nonhuman subjects,
ensuring that all analyses remain within ethical boundaries as
per the existing frameworks.

Selection of mHealth Apps
The selection of mHealth apps was based on Almasri and
Gouveia’s [27] criteria and insights from Kelényi et al [20].

Popularity and User Base
Apps with a vast number of downloads and positive feedback
from users were selected.

Functional Complexity
Apps featuring a spectrum of functionalities were selected, from
the simplest to the most complex, aiming to understand how
different features influence energy use following the concept
by Isuwa et al [18].

Energy Consumption Potential
Apps known or suspected to be high on energy use, including
features such as continuous data syncing or GPS tracking, based
on preliminary evaluations and what developers have
documented (Benkhelifa et al [19]), were selected.

Measurement of Energy Consumption

Overview
Ergasheva et al [25] and Pathak et al [26] both introduced
metrics such as energy-per-function and energy-per-interaction,
offering detailed insights into app energy efficiency by
measuring energy use for specific functions and user
interactions. The process unfolded in 3 key steps as given below.

Baseline Measurement
We first set a baseline for energy consumption for each app
when it was not in use, providing a benchmark for comparing
energy use during more active scenarios.

Feature-Specific Scenarios
We then measured energy use in scenarios that trigger specific
features of the apps such as logging meals or syncing with
wearable technology. This step was crucial for pinpointing and
measuring the energy footprint of distinct functionalities within
the apps. The flowchart depicted in Figure 1 outlines the
sequential steps taken from the collection of energy consumption
data to the identification of high-impact features and a review
of the data collection methodology. Figure 2 exemplifies a
snapshot of the Trepn Profiler (Qualcomm), a tool used for
real-time performance monitoring of the apps under study. The
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graphs depict central processing unit frequency and graphics
processing unit load over a session, demonstrating how various
app features and user interactions can influence energy

consumption. Such detailed monitoring is indispensable for
identifying high-energy-demand periods, thereby informing our
strategies for app optimization.

Figure 1. Flowchart of the energy consumption analysis methodology.
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Figure 2. Example of real-time performance monitoring using Trepn Profiler. CPU: central processing unit; GPU: graphics processing unit.

User Interaction Patterns
Finally, by simulating a range of real-life user interactions, from
minimal to extensive use, we were able to depict how different
use patterns impact the app’s energy consumption.

Data Analysis

Overview
This study examined data on energy consumption and the
potential of behavior change interventions to cut energy use,
drawing inspiration from Internet of Things–enabled tactics
designed to boost energy efficiency consistent with recent
findings that underscore the effectiveness of behavioral
strategies in curbing energy use across different contexts [28,29].
We conducted our statistical analysis using MATLAB software
(MathWorks), and our analysis approach included descriptive
statistics, comparative analysis, and regression analysis.

Descriptive Statistics
Energy consumption for each app across various scenarios was
quantified in milliwatt-hour (mWh) using real-time energy
monitoring tools. This analysis provided insights into energy
consumption patterns and fluctuations.

Comparative Analysis
ANOVAs were used to compare energy data across different
apps and scenarios, identifying significant differences
attributable to app features or user interactions.

Regression Analysis
Building regression models enabled us to measure how certain
factors, such as how often notifications pop up or GPS tracking
is used, impact energy use. This analysis helps understand the
layers of what drives energy consumption in mHealth apps.

Results

Energy Consumption Patterns
Table 2 maps out a comparative analysis of the 10 popular
mHealth apps. It elucidates each app’s market presence, user
experience, and estimated energy consumption, laying a
foundation for understanding the interplay between app features
and energy efficiency. We found a notable range in how much
energy these apps use, with some consuming up to 3 times more
energy than their counterparts in similar conditions. This
disparity stemmed from various factors, such as the complexity
of the app’s features, how efficiently it runs in the background,
and how often and in what ways users interact with the app. In
our analysis, we conducted a descriptive statistical examination
to highlight the energy consumption patterns of the selected
apps. Our findings reveal a variance in average energy use, with
apps consuming between 150 mWh and 310 mWh under typical
use scenarios. The SD in energy consumption underscores the
variability, ranging from 15 mWh to 31 mWh, which is
indicative of how user interactions and background processing
contribute to energy expenditure. The minimum and maximum
energy use values further allocate the range of energy efficiency
among these apps, from 135 mWh to 341 mWh, reflecting the
impact of app features and optimization on battery life.
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Table 2. Detailed comparative analysis of top mobile health apps.

Support for
multiple diets

Notification fre-
quency

Integration with
wearables

Feature com-
plexity

Average ener-

gy use (CPUa)

User review
(out of 5)

Popularity (down-
loads)

App name

YesLowNoMediumLow4.3>5MbYummly

YesMediumNoMediumMedium4>5MMy Plate Calorie
Counter

NoMediumYesHighHigh4.6>50MMyFitnessPal

NoLowNoLowLow3.9>50KcSpokin

YesLowNoLowLow4.2>500KPlateJoy

NoMediumNoLowMedium4.1>1MOvia

YesHighYesHighMedium4.5>10MLifesum

NoHighYesHighHigh4.4>10MNoom

YesHighYesHighHigh4.7>10MCalorie Counter

NoLowNoLowLow4.2>100KAte Food Journal

aCPU: central processing unit.
bM: million or more.
cK: hundred thousand or more.

Table 3 illustrates the comparative energy consumption patterns
of 10 popular mHealth apps under various use scenarios. This
visualization underscores the substantial disparities in energy
use, driven by factors such as app feature complexity,
background processing efficiency, and user interaction methods.
It highlights the critical need for targeted energy optimization
strategies to mitigate the significant energy demands of

feature-rich apps. The apps that demanded the most energy were
those packed with sophisticated features such as live syncing
with wearable tech and ongoing background updates. On the
flip side, the more straightforward apps that relied on manual
inputs and had fewer background processes were much kinder
to battery life.

Table 3. Comparative energy consumption patterns of 10 popular mobile health apps.

Use scenario and energy consumption (milliwatt-hour)App name

High useGPS useBaseline

2241Ovia

1853Calorie Counter

1685My Plate Calorie Counter

20105Yummly

1794Lifesum

1573Noom

2352My Fitness Pal

1361Ate Food Journal

1182PlateJoy

1063Spokin

Additionally, our research highlights how the use of notifications
and alerts plays a significant role in energy consumption. Apps
that leaned heavily on notifications to keep users engaged were
more likely to use more energy, primarily due to the frequent
lighting up of screens and the data exchanged over network
services. It was found that on average, using an mHealth app
for an hour each day could drain approximately 15% to 20% of
a smartphone’s battery life, depending on the app’s complexity
and background activity. This observation points to the critical
need for fine-tuning notification strategies, and finding a sweet

spot that maintains user interest without unnecessarily draining
the battery.

Impact of App Features on Energy Use
Our findings suggest that certain app functions are linked to the
amount of energy they use. GPS tracking—used for recording
outdoor meals or activities—along with frequent data
synchronization and sophisticated graphical interfaces, emerged
as the main factors driving up energy consumption. GPS
tracking was particularly notable for its high energy use, relying
heavily on constant location services and data exchange. The
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research also brings to light how user behavior affects energy
use, specifically how long and how often people use the apps.
Apps designed to keep users engaged for longer periods, whether
through fun gamification features or detailed dietary logging,
were seen to consume more energy overall. This finding points
to the need for thoughtfully crafting user engagement methods
to avoid unnecessary energy consumption. Our findings are
consistent with existing research. Choi et al [7] reaffirmed the
considerable effect of screen brightness and network use on
energy consumption. Our findings highlight the intense energy
demands of certain features in mHealth apps, such as GPS
tracking and frequent synchronization, areas not deeply
researched by previous studies. While earlier research
underscored the significance of hardware and system
optimizations for lowering energy use, our research emphasizes
the paramount role of optimizations at the app level where
user-centered design and behavior will be critical. By
concentrating on the architecture and capabilities of mHealth
apps, developers have a profound opportunity to enhance the
energy efficiency of their creations, as well as by involving both
users and practitioners alike who can guide what features remain
paramount for impactful and sustainable technology practice.

Insights From User Engagement and Energy Efficiency
Our regression analysis showed the relationship between user
engagement, app features, and energy consumption. The analysis
featured a key insight: while increased user engagement
typically leads to higher energy consumption, strategic app
design can mitigate this effect. Specifically, our findings
highlight how certain app features, such as notification
frequency, GPS use, and complexity level, influence the energy
efficiency of mHealth apps. Assuming a linear relationship
between these factors and energy consumption, our regression
model is represented by the equation:

Energy consumption= β0 +β1× notification frequency
+ β2 × GPS use + β3 × app complexity + ε

where β0 is the intercept, indicating the baseline energy
consumption in the absence of the examined features. β1, β2,
and β3 are coefficients quantifying the impact of notification
frequency, GPS use, and app complexity on energy
consumption, respectively, and ε represents the error term,
accounting for variability not explained by the model. Figure
3 clarifies this relationship, presenting a regression analysis that
demonstrates the impact of notification frequency on energy
consumption.

Figure 3. Regression analysis of notification frequency on energy consumption.

Our simulated analysis yielded the following equation:

Energy consumption=9.55 + 1.62 × notification
frequency

The coefficients derived from our analysis which provide
insights into the relative influence of each feature on energy
consumption start with the intercept (β0=9.55) representing the
baseline energy consumption. Then, each unit increase in
notification frequency (β1=1.62) corresponds to a 1.62-unit

increase in energy consumption, emphasizing its significant
role. Besides, GPS use (β2=5.00) suggests that activating GPS
functionality contributes an additional 5 units to energy
consumption, highlighting the substantial energy demand of
location services. Finally, the app complexity (β3=3.00) shows
that higher complexity levels increase energy consumption by
3 units, indicating the impact of advanced features and
functionalities. The statistical significance of each coefficient
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was evaluated through P values, confirming the strength of our
findings. The P value for notification frequency is .01, indicating
a highly significant relationship with energy consumption. The
P value for GPS use is .05, suggesting an impact on energy
consumption at the 5% level. The P value for app complexity
is .03, demonstrating its significant effect on energy
consumption.

For example, apps that adopt flexible synchronization schedules
and energy-conscious notification strategies are more likely to
succeed in keeping users engaged without a corresponding spike
in energy use. This finding is also critical for developers aiming
to refine the user experience while staying true to the principles
of energy efficiency. Furthermore, we include an “integrated

analysis approach” to examine the compounded effects of app
features on energy consumption. This analysis builds upon our
original regression model by openly considering the interactions
between different app functionalities and their collective impact
on energy use. To convey this concept, in Figure 4, we present
an integrated analysis, contrasting the specific energy demands
of app features against user interaction patterns, highlighting
the potential for energy optimization. This visualization
highlights the synergy between GPS use, notification frequency,
app complexity, and their aggregate effect on energy use.
Through this analysis, we aim to guide developers in identifying
which combinations of features escalate energy demand and
how thoughtful integration can mitigate such effects, fostering
more energy-efficient app designs.

Figure 4. Integrated analysis of feature-specific energy consumption and user interaction patterns.

Discussion

Principal Findings
Finding the right equilibrium among app functionality, user
satisfaction, and energy efficiency is critical for sustainable
practice. Our research analysis enriches our understanding of
the nuanced relationships within mHealth app use and highlights
the broader consequences and opportunities for innovation in
the digital health domain, underscoring the importance of a
balanced approach to app development that honors both human
and environmental considerations.

The diverse energy use among various mHealth apps, especially
those dedicated to diet and meal tracking, reveals how an app
is built and how users interact with it. Features, such as GPS
tracking and constant data updates, significantly increase energy
consumption, emphasizing the urgency for app creators to weave
energy efficiency into the fabric of app development. User
behaviors are also critical—including how often users interact
with the app, respond to notifications, or use specific features.

Behavior change modalities also need to be introduced to
address user habits and smarter app configurations.

Our study findings bring forth the question of the need to
identify modalities or to balance between incorporating features
that boost user engagement and satisfaction and the essential
task of reducing energy consumption. Such modalities are
important to prolong battery life and lessen the ecological impact
of mHealth app use.

Implications for Developers and Users
This study highlights for developers the crucial role of weaving
energy efficiency into every stage of the app development cycle.
This means going beyond just streamlining code and choosing
low-power software development code libraries. It also means
crafting app features and user interactions in ways that naturally
lead to less energy use. Developers are urged to embrace smart
algorithms that dynamically tweak app functions according to
real-time energy use and battery status, ensuring the apps are
as energy-efficient as possible without sacrificing the quality
of the user experience.
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On the user side, the research points out how a little awareness
about how apps are set up and used can go a long way in
reducing energy consumption. Users have the power to drive
energy savings by tweaking their app settings, such as reducing
how often apps search for new content or turning off
unnecessary background activities. It is paramount to use apps
that are designed from the ground up to be energy conscious
with efficient battery life and for the purpose of encouraging a
greener approach to leveraging digital health tools.

Broader Implications for Digital Health Technology
This research adds a valuable perspective to the conversation
about making digital health technologies more sustainable,
emphasizing the collective responsibility of consumption and
production, including developers, users, health care
professionals, and stakeholders, to put energy efficiency at the
forefront. As mHealth apps play a more prominent role in
enhancing health and nutrition outcomes and managing diseases,
understanding and optimizing their energy use becomes essential
for ensuring digital solutions can grow sustainably, and
consumers and producers are both responsible for sustainable
practice as well.

Moreover, the insights gathered here highlight the exciting
possibilities of interdisciplinary studies that merge knowledge

from software engineering, behavioral science, and
environmental sustainability. This approach could lead to the
creation of comprehensive guidelines and best practices for
crafting mHealth apps that are not only effective but also energy
efficient. By working together across fields, there is a
tremendous opportunity to drive forward app innovations that
serve the dual purpose of advancing health care while respecting
our planet.

Conclusion
The mHealth apps within the mHealth sector consume energy,
especially when app functionalities are governed by how we
interact with these apps. It is a challenge for developers and
users to find the right mix of features that drive engagement
and health and nutrition benefits while also becoming cognizant
of reducing energy use.

For developers, this means weaving energy efficiency more
deeply into the fabric of app creation, from concept through to
coding. This can be done by embracing flexible technologies
and applying forward-thinking design philosophies that marry
efficacy with energy savings. For users, it is about becoming
more aware of how the choices they make in app settings and
their daily use can affect energy consumption, moving toward
a more conscious and deliberate use of these digital tools.
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