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Abstract

Background: Current methods of monitoring cognition in older adults are insufficient to address the growing burden of Alzheimer
disease and related dementias (AD/ADRD). New approaches that are sensitive, scalable, objective, and reflective of meaningful
functional outcomes are direly needed. Mobility trajectories and geospatial life space patterns reflect many aspects of cognitive
and functional integrity and may be useful proxies of age-related cognitive decline.

Objective: We investigated the feasibility, acceptability, and preliminary validity of a 1-month smartphone digital phenotyping
protocol to infer everyday cognition, function, and mood in older adults from passively obtained GPS data. We also sought to
clarify intrinsic and extrinsic factors associated with mobility phenotypes for consideration in future studies.

Methods: Overall, 37 adults aged between 63 and 85 years with healthy cognition (n=31, 84%), mild cognitive impairment
(n=5, 13%), and mild dementia (n=1, 3%) used an open-source smartphone app (mindLAMP) to unobtrusively capture GPS
trajectories for 4 weeks. GPS data were processed into interpretable features across categories of activity, inactivity, routine, and
location diversity. Monthly average and day-to-day intraindividual variability (IIV) metrics were calculated for each feature to
test a priori hypotheses from a neuropsychological framework. Validation measures collected at baseline were compared against
monthly GPS features to examine construct validity. Feasibility and acceptability outcomes included retention, comprehension
of study procedures, technical difficulties, and satisfaction ratings at debriefing.

Results: All (37/37, 100%) participants completed the 4-week monitoring period without major technical adverse events, 100%
(37/37) reported satisfaction with the explanation of study procedures, and 97% (36/37) reported no feelings of discomfort.
Participants’scores on the comprehension of consent quiz were 97% on average and associated with education and race. Technical
issues requiring troubleshooting were infrequent, though 41% (15/37) reported battery drain. Moderate to strong correlations
(r≥0.3) were identified between GPS features and validators. Specifically, individuals with greater activity and more location
diversity demonstrated better cognition, less functional impairment, less depression, more community participation, and more
geospatial life space on objective and subjective validation measures. Contrary to predictions, greater IIV and less routine in
mobility habits were also associated with positive outcomes. Many demographic and technology-related factors were not associated
with GPS features; however, income, being a native English speaker, season of study participation, and occupational status were
related to GPS features.

Conclusions: Theoretically informed digital phenotypes of mobility are feasibly captured from older adults’personal smartphones
and relate to clinically meaningful measures including cognitive test performance, reported functional decline, mood, and
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community activity. Future studies should consider the impact of intrinsic and extrinsic factors when interpreting mobility
phenotypes. Overall, smartphone digital phenotyping is a promising method to unobtrusively capture relevant risk and resilience
factors in the context of aging and AD/ADRD and should continue to be investigated in large, diverse samples.

(JMIR Hum Factors 2024;11:e59974) doi: 10.2196/59974
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Introduction

Background
Alzheimer disease and related dementias (AD/ADRD) place
immense pressure on our health care system. They represent a
global issue that is worsening and will be exacerbated by
insufficient disease screening methods and a lack of ecologically
valid outcome measures for clinical trials [1]. New and
innovative approaches for early detection and monitoring are
direly needed to address this global crisis. In this paper, we
present results from a proof-of-concept study demonstrating
the promise of smartphone digital phenotyping to capture
clinically relevant risk factors and outcomes in the context of
aging and AD/ADRD.

Decades of clinical trial research indicate that early intervention
will be critical for effective AD/ADRD treatment [2-5].
Biomarker testing (eg, positron emission tomography
neuroimaging and cerebrospinal fluid), traditional
neuropsychological evaluation, and clinician- or informant-rated
assessments have historically been the gold-standard methods
for detection and diagnosis. However, these methods present
drawbacks, including limited accessibility (eg, proximity and
cost), scalability (ie, logistical constraints for wide-scale clinical
implementation), prognostic value (ie, inconsistent
correspondence with clinical progression), and ecological
validity (ie, poor representation of real-world functioning)
[6-10]. Traditional neuropsychological measures are also
affected by sociocultural factors, such as educational quality,
socioeconomic status, native language status, and acculturation,
rendering them inappropriate for the increasingly diverse global
population [11-20]. Subtle difficulties in complex everyday
tasks signal early decline and are critical to assess; however,
standard functional assessments are limited by recall bias,
availability of an informant reporter, bias due to attributes of
the informant, outdated items, and poor sensitivity [21-27].
Patterns and trajectories of cognitive and functional decline are
also extremely heterogeneous and person-specific [28-30] and
are thus difficult to assess using a one-time standardized
assessment measure. Taken together, health care systems are
ill-equipped to screen for early signs of cognitive impairment
at scale, as evidenced by recent estimates that 92% of cases of
mild cognitive impairment (MCI) remain undiagnosed [31-34].
In addition to poor screening methods, traditional clinical trial
outcome measures are not sufficiently meaningful and precise
to demonstrate therapeutic benefit at early stages [4,25,35-40].
Thus, a growing priority in the field of AD/ADRD is to develop
and implement sensitive and functionally meaningful screening

and outcome measures as new therapies are evaluated earlier
in the disease course [41].

New digital assessment methods have great potential for
efficient, accessible, sensitive, and objective assessment of early
cognitive and functional changes reflecting risk for AD/ADRD
[6,7,42-46]. Digital tools can capture microlevel behavioral data
with increased sensitivity and reduced sample size requirements
compared with traditional paper-and-pencil neuropsychological
measures and functional scales [47]. Gathering this information
at home can address accessibility limitations for those in rural
environments or who face hardships traveling to and from a
clinical site, and may provide a more reliable and ecologically
valid representation of real-world functioning compared to
traditional evaluation at a single time point in a highly controlled
setting [48-50]. As global technology use and affordability of
personal devices continue to rise [51,52], new technologies can
potentially address crucial gaps in the scalability and
accessibility of current methods and counteract higher rates of
missed diagnosis among populations experiencing low
socioeconomic status [34,53-57].

Digital phenotyping is one innovative approach that uses the
“moment-by-moment quantification of the individual-level
human phenotype in situ” based on interactions with technology,
including smartphones and smart home devices, to capture social
and behavioral data passively, continuously, and with minimal
interference [58-60]. It collects high-frequency, fine-grained
data reflecting everyday behaviors “in the wild” without relying
on user engagement, subjective reports, or burdensome
procedures. Preliminary support has been demonstrated in
psychiatry studies leveraging a host of sensors (eg, GPS,
accelerometer, Wi-Fi or Bluetooth signals, ambient sound and
light, app use, call and text message metadata, and keystroke
dynamics) and imputed behavioral features (eg, time spent at
home, sleep cycles, level of socialization, and routine or
anomalies) to predict clinical outcomes, including depression
and bipolar disorder symptoms, suicide risk, psychosis relapse,
and depression treatment response [61-70]. In the context of
neurodegenerative disorders, several sensors—particularly
keystroke dynamics and phone or battery use metrics—have
shown associations with neuropsychological test performance,
diagnostic severity, and even gray matter volume in clinical
cohorts, including those with MCI, Alzheimer disease (AD),
frontotemporal dementia, and multiple sclerosis [71-77].

Basic questions of feasibility, acceptability, and ethical
considerations related to data privacy are important to weigh
when considering the highly sensitive nature of digital
phenotyping data in vulnerable populations [78-80]. Few studies
have proactively addressed these questions in the context of
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older adults with cognitive decline [65]. Furthermore, many
existing studies have used exploratory approaches without a
priori hypotheses [81]. As described by Hackett and Giovannetti
[7] and Leaning et al [66], some of the many interpretive and
logistical challenges of digital phenotyping can be mitigated
with conceptual models and clinically informed features to
provide context to results and improve reproducibility.

In this paper, we present findings from a proof-of-concept study
evaluating a smartphone digital phenotyping protocol to assess
cognition, everyday function, and mood in a cohort of older
adults with and without cognitive decline. Here, we focus on
smartphone-derived GPS data as the digital phenotyping sensor
of interest. Our study design and analytic approach were
informed by a conceptual framework proposed by Hackett and
Giovannetti [7] based on established trends in cognitive
neuroscience, neuropsychology, neurology, and computer
science literature [7]. The conceptual framework (ie, the
Variability in Everyday Behavior [VIBE] model) posits that
pathological cognitive decline is accompanied by a reduction
in everyday activities, worsening mood, and lower scores on
standardized neuropsychological measures. These declining

mean-level trends occur alongside increases in intraindividual
variability (IIV) on measures of cognition and everyday function
as individuals become more inefficient and work to compensate
for underlying disease progression [7]. Trends of decreasing
levels of everyday activity and increasing variability in everyday
activities may be indexed by passively obtained smartphone
data such as GPS trajectories, hence the focus of this study.

Objectives
The primary aims of this study were twofold: (1) to examine
the feasibility and acceptability of a digital phenotyping protocol
among older adult smartphone users, and (2) to examine
associations between passively obtained GPS movement
trajectories collected over a 1-month study period and traditional
validated measures of cognition, everyday functioning, mood,
and mobility habits collected at baseline. Data were collected
using the Learn, Assess, Manage, and Prevent (LAMP) platform,
an open-source platform for research and clinical use, via the
mindLAMP app [82-84]. Data for the second aim were analyzed
and interpreted according to the following a priori hypotheses
based on our conceptual framework (ie, the VIBE model), shown
in Textbox 1.

Textbox 1. Hypotheses informed by the Variability in Everyday Behavior model for individuals along the continuum from healthy cognition to MCI.

Cognition and function

Average GPS metrics of activity will show a positive linear relation with measures of cognition and function, whereas GPS intraindividual variability
(IIV) for all categories will show a negative relation with cognition and function.

Mood

Average GPS metrics of activity will show a negative linear relation with depression (ie, greater overall mobility will be associated with less depression),
whereas GPS IIV for all categories will show a positive relation with depression (ie, greater mobility variability will be associated with more depression).

Mobility

Average GPS metrics of activity will be positively associated with objective and subjective measures of gait speed, life space, and community
participation.

The study also included two exploratory aims: (1) to examine
relations between GPS features and participant intrinsic and
extrinsic factors (eg, sociodemographic and contextual) to
inform the selection of covariates or moderating variables in
future studies and (2) to explore whether patterns of
mobility—rather than absolute amounts of mobility—also relate
to validators. Overall, our results provide preliminary support
for the feasibility, acceptability, and validity of digital
phenotyping in older adults, along with key insights that can be
used to inform future studies.

Methods

Recruitment
Participants aged >60 years with healthy cognition, diagnoses
of MCI, or mild AD were recruited from specialty dementia
clinics and the community within the Philadelphia region,
beginning in January 2022. Recruitment also involved contacting
previous participants of other research studies within our
laboratory, consistently attending community outreach events
to establish trust and familiarity with our research team, and
providing educational presentations on topics related to cognitive
health and aging at local community centers. Individuals who
expressed interest in participating in our study were contacted

by a member of the study team to schedule a study appointment.
During the scheduling call, the team member reviewed basic
eligibility criteria (eg, age, use of a smartphone, and availability
of a study partner), and participants who met criteria were
scheduled for an initial session. Inclusion and exclusion criteria
were reviewed again in detail at the start of the baseline session
to ensure eligibility. General inclusion criteria for all participants
were (1) aged ≥60 years, (2) fluent in English, (3) existing
smartphone user (iOS or Android; meeting minimum software
version compatibility) for at least 1 year before joining the study,
(4) Wi-Fi connectivity at home, (5) phone use on a daily basis;
(6) no plans to purchase or switch to a new smartphone over
the next 4 weeks, and (7) availability of an informant reporter
who has knowledge of the participant’s daily functioning.
Exclusion criteria were (1) a history of severe psychiatric or
nervous system disorders (other than dementia), (2) current
metabolic or systemic disorders, (3) severe sensory or motor
deficits precluding smartphone use, (4) intellectual disability,
and (5) scheduled surgery or major travel over the 4-week study
period. Participants with self- or clinician-reported diagnoses
of healthy cognition, MCI, or mild AD completed
comprehensive neuropsychological testing during a baseline
visit (as described in the subsequent sections), and Jak/Bondi
neuropsychological actuarial criteria were used to confirm
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diagnostic group membership [85]. Follow-up consensus
diagnosis was used to account for atypical clinical factors that
may impact the accuracy of actuarial diagnosis (eg, English as
a second language and co-occurring mood or psychiatric
concerns).

Study informants were also recruited for each participant to
corroborate responses on the self-reported functional decline
validation measure, to confirm other data pertinent to clinical
history, and to provide assistance with potential technical
difficulties—particularly for participants with MCI or dementia.
General inclusion and exclusion criteria for all informants
included (1) aged ≥18 years; (2) fluent in English; (3)
cognitively healthy with no diagnosis of dementia, MCI, or
other neurological and psychiatric disorder; (4) available and
willing to complete study questionnaires in person, by phone,
or by web; (5) having at least weekly contact with the
participant; and (6) reports that they are knowledgeable of the
participant’s daily functioning and smartphone use.

Study Procedures

Study Timeline
Participants meeting eligibility criteria were scheduled for an
in-person visit (session 1) and were enrolled in the study for

approximately 4 weeks. As outlined in Figure 1, participants
and informants completed 2 study visits, separated by 4 weeks.
Session 1 lasted 2 to 4 hours and included a detailed review of
study procedures, informed consent, comprehension of consent
quiz, cognitive testing, questionnaires, and configuration of the
study app (mindLAMP) on participants’ personal smartphones
(ie, downloading mindLAMP, logging in using
participant-specific secure credentials, and enabling continuous
location services). At the completion of session 1, participants
were instructed to resume their daily routines for 4 weeks and
were compensated US $50 upfront for their participation. They
were asked not to enter low battery or airplane mode and not
to log out of the mindLAMP app, which would impact GPS
data quality. During the 4-week study period, mindLAMP
passively and securely collected GPS data without user
engagement. At the end of the study period, participants
completed session 2 (in-person or remotely), which consisted
of debriefing questionnaires. The mindLAMP app was deleted
from participants’ smartphones at session 2, halting data
collection.

Figure 1. Study timeline.

Privacy and Security Safeguards
The LAMP platform was used for the collection of digital
phenotyping (GPS) data via the mindLAMP smartphone app,
which is available for free on the Apple App Store and Google
Play Store. LAMP is an open-source platform for research and
clinical use developed by the Division of Digital Psychiatry at
Beth Israel Deaconess Medical Center [83]. It uses
industry-standard encryption protocols to render information
collected from smartphones unidentifiable and transmits data
to a secure cloud database via Health Insurance Portability and
Accountability Act (HIPAA)–compliant methods whenever
Wi-Fi connectivity is established. Participants logged in to
mindLAMP via a randomly generated 10-digit user ID (UID)
generated within the LAMP platform by the study coordinator,

which was only used for the collection of digital phenotyping
data. Therefore, no personally identifiable information is
associated with the data collected by mindLAMP. Participants’
6-digit study ID, used for all other clinical data collected within
the laboratory at Temple University, is linked to their
mindLAMP UID on a university-approved secure research
database only (REDCap [Research Electronic Data Capture;
Vanderbilt University]).

The aforementioned security and privacy information was
thoroughly reviewed with participants during informed consent
at session 1. This process included a review of written and visual
handouts depicting privacy safeguards, examples of the scope
of data collected, and results of other published studies that used
mindLAMP [86]. Participants could choose to end study
participation and have their study data deleted at any time. After
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reviewing the consent form, a 10-item comprehension of consent
quiz with yes or no response options was administered to ensure
participants completely understood the information outlined in
the consent form. This quiz covered details including the
purpose of mindLAMP (eg, “This study requires downloading
the mindLAMP app which collects information from my
smartphone sensors”), possible risks or benefits to study
participation, such as potential battery drain (eg, “It is possible
that I will notice a reduction in my phone’s battery life while
mindLAMP is running on my phone”), and data security and
encryption methods (eg, “The mindLAMP app uses a secure
encryption system called ‘hashing’ to make all information that
it collects unidentifiable and untraceable”). Multimedia
Appendix 1 presents the complete comprehension of consent
quiz. Incorrect items were further reviewed until comprehension
was established. These procedures were informed by the Digital
Health Checklist and other materials from the Research Center
for Optimal Digital Ethics health team, which encourages digital
health researchers to proactively identify gaps in the
communication of study risks, benefits, and privacy and security
details [78,79].

Backend Technical Implementation
Data collection and storage were supported by a self-deployed
version of the open-source LAMP Platform. A Temple
University-approved secure cloud server (1-TB capacity) was
purchased and configured with the LAMP application
programming interface to enable research participants to connect
to the LAMP platform and access the mindLAMP app. Study
data were stored in our instance of the mindLAMP database
(ie, our copy of the LAMP platform located on a study-specific
cloud server) via CouchDB, ensuring a standardized data format
consistent with other studies using the LAMP platform [84].
The functionality of the mindLAMP app itself is continually
maintained by the team at mindLAMP at the Beth Israel
Deaconess Division of Digital Psychiatry. Ongoing security
monitoring and backup of study data were maintained by Temple
University IT. To monitor unexpected periods of missing data
due to potential technical issues (ie, phone powered off,
mindLAMP logged out, or permissions reset), we created a code
to automate an email alert to the study team (Cronjob) when
there were >3 days of missing sensor data. In these instances,
the email message included the UID and the corresponding
missing sensor, and a member of the study team promptly
reached out to the participant to troubleshoot.

Measures

Feasibility and Acceptability
To assess feasibility, we tracked the number of participants who
completed the 4-week study period after providing consent and
completing session 1 and those who requested to withdraw for
any reason. Feasibility was also operationalized by performance
on the comprehension of consent quiz, which demonstrates
participants’ ability to comprehend complex technical
information specific to digital phenotyping studies. To
gauge acceptability of the informed consent and overall study
procedures, we administered a debriefing survey at session 2
after participants had completed the full study period.
Participants were asked to rate their level of satisfaction with

the explanation of the study procedures at session 1 on a scale
of 4 (very satisfied—all components of the study were clearly
explained) to 1 (very unsatisfied—all components of the study
were poorly explained).

Participants were also asked if they experienced any major
difficulties with their phones, if they experienced any feelings
of discomfort or paranoia due to the study app running on their
smartphones, or if there were any major changes in how they
used their smartphones during the study period (yes or no). If
they answered “yes” to changes in smartphone use, participants
selected all applicable options, including “I used my phone
less/more overall,” “I charged my phone less/more,” “I carried
my phone with me less/more,” and “other.” Finally,
troubleshooting contacts between study staff and participants
were tracked and reported as part of feasibility findings.

Validators

Overview

Validation measures administered at session 1 included
neuropsychological tests used widely in the clinical diagnosis
of MCI and dementia; self- and informant-report measures of
cognitive decline and everyday functioning; questionnaires
pertaining to mood; and measures of gait speed, geospatial life
space, and community participation. These measures have
demonstrated strong psychometric properties and were therefore
used together as validation comparisons against digital
phenotyping data. More details are provided in the subsequent
sections.

Neuropsychological Tests

The neuropsychological test battery included the Hopkins
Reading Test [87] as an estimate of premorbid intellectual ability
(IQ), the Mini-Mental State Examination [88] as a global
cognitive screener, and tests of attention (Trail Making Test-Part
A [89] and Wechsler Memory Scale—Revised Digit Span
Forward [90]), processing speed (Salthouse Letter and Pattern
Comparison [91]), executive function (Trail Making Test-Part
B [89] and Wechsler Memory Scale—Revised Digit Span
Backward [90]), episodic memory (Hopkins Verbal Learning
Test—Revised Delayed Recall [92] and Brief Visuospatial
Memory Test-Revised Delayed Recall [93]), and language
(Animal Fluency [94] and Boston Naming Test 30-item version
[95]). Raw scores of each test were transformed into
demographically corrected t scores using the Calibrated
Neuropsychological Normative System [94], adjusting for age,
sex, education, and estimated premorbid IQ (ie, Hopkins
Reading Test score), which enabled more accurate estimation
of cognitive ability within our diverse sample. An average t
score was computed for the 2 tests within each cognitive domain
to generate composite scores for attention, processing speed,
executive function, delayed memory recall, and language
abilities to streamline presentation of results.

Reported Cognitive Decline and Everyday Functioning

Self-reported cognitive decline was collected using the Everyday
Cognition Scale-Short Form [96]. Self- or informant-reported
everyday functioning was captured with the Functional
Activities Questionnaire (FAQ [97]). Self-reported FAQ was
used for participants with healthy cognition, and
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informant-reported FAQ was used for participants with MCI
or dementia. Higher scores on these measures indicate more
cognitive decline and more functional impairment, respectively.

Mood

Mood symptoms were indexed using the 15-item Geriatric
Depression Scale (GDS [98]), a widely used self-report measure
of depressive symptoms among older adults that requires
participants to indicate whether they experience a list of common
depression symptoms in a “yes/no” format. Raw scores were
transformed into demographically corrected t scores using the
Calibrated Neuropsychological Normative System as mentioned
earlier. Higher t scores indicate higher levels of depression.

Gait Speed, Life Space, and Community Participation

The Timed Up and Go Test (TUG) was administered at session
1 as an objective measure of gait speed. This task measures the
time it takes to rise from a chair, walk 10 feet, turn, walk back
to the chair, and sit down. It is widely used to examine balance,
functional mobility, gait speed, and fall risk in older adults
[99,100]. Participants also completed the University of Alabama
at Birmingham Life-Space Assessment (LSA), a self-report
measure of mobility for community-dwelling older adults [101].
It captures the level of independence and spatial extent of a
person’s life over the preceding month and has shown strong
associations with mobility within the home and community and
with performance of activities of daily living [102]. Constricted
life space has also been associated with risk for MCI and
dementia [103,104]. The Australian Community Participation
Questionnaire (ACPQ) 15-item version was administered as an
additional measure of concurrent validity and assesses the extent
to which someone engages in a range of community activities.
Subscales include contact with immediate household, extended
family, friends, and neighbors; participating in organized
community activities; taking an active interest in current affairs;
and religious observance [105]. An index of breadth of
participation across the 7 domains was derived using a
mean-split procedure for each domain, followed by summing
these scores to generate an overall index ranging from 1 to 7
(as described by Brett et al [106]).

Other Participant Features

Demographic

Demographic data included participants’self-reported biological
sex assigned at birth, age, race, ethnicity, current living status
(alone or with others), current occupational status, educational
attainment, and other information related to socioeconomic
status (eg, highest household annual income).

Technology Use

Participants completed a 6-item Habitual Smartphone Behavior
subscale [107] to assess smartphone use patterns, providing
responses ranging from “strongly agree” to “strongly disagree”

to questions such as “Smartphone usage is part of my daily
routines.” We also asked participants, “Do you usually have
your phone with you when you leave home?” (smartphone
portability), to which they could reply, “Yes- I almost never
leave my house without my phone,” “In between—I leave my
house without my phone about half the time,” or “No, I often
leave my house without my phone.” The Mobile Device
Proficiency Questionnaire was administered as a measure of
digital literacy [108]. Participants also indicated their
smartphone operating system (Android vs iOS).

Seasonal and COVID-19 Factors

Dates of study participation were collected and coded as winter,
fall, spring, and summer to explore potential seasonal effects
on mobility habits. Because study participation took place during
the COVID-19 pandemic for some participants, we asked about
the impact of the COVID-19 pandemic on social participation,
routines, and mobility behaviors at the time of study
participation. Participants were asked, “On a scale of 1-5, how
isolated or cut off from family and friends are you feeling due
to limited/canceled social gatherings resulting from
COVID-19?” “On a scale of 1-5, how disruptive has the
COVID-19 pandemic been to your daily routines and activities?”
and “On a scale of very much limited to very much expanded,
how much has the COVID-19 pandemic changed your
mobility/your movements outside of the home?”

Self-Reported Health Changes During the Study Period

At the end of the study period during session 2, participants
reported whether there were any changes in their overall health
during the study period by responding to a single question on
the debriefing survey. Response options included (1) yes,
significant change; (2) yes, a little change; or (3) no change. If
they endorsed any change in health, they were given the option
to elaborate.

Digital Phenotyping (mindLAMP)
Though the mindLAMP app enables the collection of a wide
array of deidentified passive and active data, this study focused
on passively obtained GPS data. mindLAMP was configured
to continuously record the device’s GPS coordinates at a
maximum frequency of 1 Hz. Raw data outputs include latitude,
longitude, altitude, and the coordinates’ estimated accuracy. At
study completion, these raw data were extracted from the study
server and processed into daily summary features (Table 1)
using a publicly available R script developed by Barnett and
Onnela [109,110]. GPS data from smartphone devices are prone
to large amounts of missing data [111]; therefore, advanced
multiple imputation methods based on weighted resampling of
the observed data were used to account for missingness before
feature calculation. These imputation methods are automatically
incorporated within the aforementioned processing script and
are described in detail in the study by Barnett and Onnela [109].
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Table 1. Daily GPS features generated from mindLAMP raw data.

Feature descriptionCategory and feature

Activity

The sum of all flight lengths that day (m)Distance traveled

Average distance (m) a person is from their center of mass (average position) on a given dayRadius of gyration

Maximum diameter (m); longest pairwise distance between any 2 pause locations that occur that dayMaximum diameter

Maximum distance from home (m); distance between home and farthest pause location from home that dayMaximum distance home

The average length of all flights that day (m)Average flight length

The average duration of all flights that day (s)Average flight duration

Inactivity

Time spent at home (min); amount of time spent that day within 200 m of home (the significant location
with the largest total amount of time between 9 PM and 6 AM throughout the study period).

Home time

Fraction of time a person is stationary (paused) during a day, relative to time spent mobile or in flight.Probability paused

Routine

Physical circadian routine; the fraction of time a person is in the same place (within a 200 m radius) at the
same time of each day throughout the study period. Ranges from 0=completely different routine to
1=identical routine.

Circadian routine

Physical circadian routine weekend or weekday stratified; similar to circadian routine except comparisons
are stratified by grouping together weekends and grouping together weekdays. Higher scores reflect greater
overall routine.

Weekend circadian routine

Location diversity

Location entropy across a person’s significant locations for the day; large values indicate spreading time
out across many different locations fairly evenly for that day; small values indicate a concentration at a few
significant locations.

Significant location entropy

The number of significant locations a person is within 200 m of that day. Determined using K-means on
the set of all pause locations with a minimum duration of 10 minutes (longer pauses given additional weight
and no 2 cluster centers within 400 m of one another).

Significant locations visited

Other

The number of minutes of missing data preimputation in a person’s GPS mobility trace that day (min)Minutes missing

Supplementary materials from Barnett and Onnela [109] give a full description of GPS features and the methods used to calculate each. A flight is
defined as a segment of linear movement; pauses are periods when a person does not move; and curved movement is approximated by multiple sequential
flights.

Statistical Analyses

Preliminary Processing
The individual mobility traces derived from GPS data were
visually inspected by examining each participant’s deidentified
mobility plots averaged across the study period (Figure 2). These
plots are generated automatically through our processing script
and enable visualization of overall mobility habits, amount of
time spent at various locations, and time of day. Following
visual inspection, daily mobility features (Table 1) were
collapsed into monthly overall average and monthly (day-to-day)

individual SD (iSD) for each participant to generate estimates
of mean mobility and mobility IIV across the study period. For
example, 30 days of daily distance traveled estimates for 1
participant were reduced to an average distance traveled per
day, and an iSD of daily distance traveled across the 30-day
study period. This approach enabled the examination of a priori
hypotheses as an important first step in the validation of GPS
data. All variables (GPS and validation measures) with highly
skewed distributions were transformed using log(x+c)
transformation to reduce the influence of outliers and make
parametric analyses more robust. Pearson correlation analyses
were used to explore relations among individual GPS features.
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Figure 2. Example mobility plots depicting overall trajectories over 4 weeks for 2 participants. Solid lines depict flights from one location to another;
circles indicate periods spent stationary, with larger sizes reflecting more time spent stationary at that location, color-coded by the time of day. (A) A
67-year-old woman living in northern Philadelphia. (B) A 70-year-old woman living in a suburb of Philadelphia.

Other preprocessing steps were completed in individual cases.
Specifically, some participants had unanticipated travel during
their scheduled study period (which was an exclusion criterion
for validation purposes). In these cases, we extended their study
duration and excluded days spent traveling from the raw data
before feature extraction. In total, 3 (8%) of the 37 participants
reported major unanticipated health changes during the study
period (1 (3%) reported eye surgery, 1 (3%) reported a major
fall with loss of consciousness, and 1 (3%) reported a fall with
head trauma and COVID-19 infection) and were excluded from
preliminary validity analyses in this study, because major health
events during passive data collection would confound relations
with baseline validators.

Primary Analyses
Descriptive statistics were first used to examine feasibility and
acceptability outcomes across the entire sample (N=37; aim 1).
Next, Pearson or Spearman correlation analyses were used to
examine the relations between the mean (monthly average) and
IIV (monthly iSD) of each mobility feature against validators
collected at session 1 (ie, cognition, everyday function, mood,
and mobility; aim 2). All validity analyses were conducted
across the entire sample after excluding 3 participants with
major health events (final n for aim 2 validation analyses=34).
Given the small sample size, we interpreted correlation
coefficients with r>0.3 as meaningful, regardless of statistical
significance. Correlations surviving Bonferroni correction of
P<.0038 (α corresponding to .05/13 GPS features) are noted to
account for multiple comparisons. As mentioned earlier, we
tested several a priori hypotheses based on our proposed
conceptual framework (ie, the VIBE model, see Textbox 1).
Specifically, we predicted that GPS mean-level activity metrics
would show a positive linear relation with global cognition,
function, and mood, whereas GPS IIV metrics would show a
negative relation with cognition, function, and mood.
Hypotheses from the original VIBE model were adjusted to

consider trends along the continuum from healthy cognition to
MCI only (excluding trends from MCI to dementia), given this
study sample only included 1 participant with dementia. We
also predicted a positive linear relation between GPS mean-level
activity metrics and objective and subjective measures of gait
speed, life space, and community participation that would reflect
concurrent validity.

Exploratory Analyses
A series of exploratory analyses examined relations between
GPS metrics and other participant factors such as demographics,
technology habits, and smartphone type, as well as
environmental factors (eg, COVID-19 and seasonal impact).
Our goal was to better understand what intrinsic and extrinsic
factors are associated with GPS trajectories in older adults so
that future studies can consider these variables as potential
covariates or moderators. This is important given the high
heterogeneity in individual features and incidental factors that
may impact the generalizability of between-group differences
in GPS trajectories. Spearman correlation analyses were used
for continuous, dichotomous, and ordinal variables, and 1-way
ANOVA was used for categorical variables with a Welch test
for unequal group variances.

To explore the utility of a GPS composite score, a Gaussian
mixture modeling (GMM) approach was used to generate a
nuanced yet singular representation of mobility trajectories. For
each participant’s set of daily GPS features (Table 1), we fit a
GMM with k=3 mixture distributions to allow for flexible
modeling with consideration of differences in the distribution
for each person due to various factors (eg, weekend and weekday
differences). The choice of k=3 was determined to maximize
clustering complexity subject to our sample size limitations to
avoid overfitting. This method also allowed us to reduce the
full set of GPS features to a single dimension. Next, we created
a distance matrix between each pair of participants in the sample
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by calculating the integral of the squared distance between each
GMM density (the larger the distance, the more different the
pair’s overall mobility patterns). After calculating the distance
matrix, we used multidimensional scaling (MDS) to extract a
1D representation of this distance matrix (hereafter termed
“MDS1”), akin to a principal component [112]. This MDS1
metric is a relative measure that represents the similarity of
overall mobility patterns across participants. For example, if 2
individuals have similar MDS1 values, their overall mobility
patterns are similar, whereas 2 individuals with very different
MDS1 values demonstrate different mobility patterns. The
MDS1 variable was used in exploratory correlation analyses to
identify whether patterns of mobility relate to validators, in
contrast to total amounts of variability in individual mobility
features.

Ethical Considerations
All aspects of the study protocol received ethics approval from
the institutional review board at Temple University (protocol
number 27013). As described earlier, all participants provided
informed consent, were given the option to opt-out of study
participation at any time, and were compensated for their time
and effort. Study data were deidentified according to privacy
procedures outlined earlier. Participants were compensated US
$50 upfront for their participation.

Results

Participant Characteristics
A total of 37 individuals participated in our study between April
2022 and January 2024. The full sample was included in the
analysis of feasibility and acceptability outcomes, whereas a

subset (n=34, 92%) was included in preliminary validity
analyses after excluding those who experienced major
unexpected health changes. The 3 (8%) participants excluded
due to major health events were aged on average 70.9 (SD 6.9)
years, 67% (2/3) were female, 100% (3/3) identified as
non-Hispanic White, and they completed on average 16.9 (SD
1.8) years of education. In addition, 2 (67%) of the 3 participants
were Android users, and all had healthy cognition.

Of the validation subset (n=34), participation was distributed
fairly evenly across all 4 seasons: 6 (18%) in the winter, 10
(29%) in the fall, 9 (26%) in the spring, and 9 (26%) in the
summer. Participants’ age ranged from 63 to 85 (mean 71.6,
SD 5.5) years and they were on average highly educated (mean
16.4, SD 2.7 years; range 10-20 years). A majority of
participants identified as female (23/34, 68%) and non-Hispanic
or Latinx (33/34, 97%). A total of 56% (19/34) participants
identified as White, 35% (12/34) as Black or African American,
and 6% (2/34) as Asian. Most participants lived with others
(23/34, 68%) and were retired (27/34, 79%). The majority
(26/34, 76%) of participants were iPhone users, whereas 8 (24%)
were Android users. Most participants met diagnostic criteria
for healthy cognition (n=28, 82%) with a minority meeting
criteria for MCI (n=5, 15%) or mild dementia (n=1, 3%). Scores
on the Mini-Mental State Examination ranged from 24 to 30
(mean 28.3, SD 1.3), and according to the FAQ, participants
on average experienced minimal difficulties with everyday
functioning (mean 1.5, SD 2). Average responses on the GDS
revealed low levels of self-reported depression (mean 1.5, SD
1.5) [113]. Participant demographic characteristics are detailed
in Table 2, and scores on validation measures of cognition,
everyday functioning, mood, and mobility are outlined in Table
3.
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Table 2. Participant demographics. Includes data from subset (n=34) included in validation analyses.

ValuesDemographics

71.6 (5.5)Age (y), mean (SD)

16.4 (2.7)Education (y), mean (SD)

Sex, n (%)

11 (32)Male

23 (68)Female

Race, n (%)

2 (6)Asian

12 (35)Black or African American

19 (56)White

1 (3)Not reported

4 (12)English as a second language, n (%)

Ethnicity, n (%)

1 (3)Hispanic or Latinx

33 (97)Not Hispanic or Latinx

Living status, n (%)

11 (32)Live alone

23 (68)Live with others

Current occupational status, n (%)

3 (9)Full-time employee, volunteer, or student

4 (12)Part-time employee, volunteer, or student

27 (79)Retired

Highest annual household income (US $), n (%)

2 (6)<30,0000

4 (12)30,000-49,000

3 (9)50,000-69,000

5 (15)70,000-89,000

3 (9)90,000-99,000

6 (18)100,000-149,000

8 (24)≥150,000

3 (9)Prefer not to answer

Phone type, n (%)

26 (76)iPhone

8 (24)Android

Smartphone portability a , n (%)

32 (94)Yes

2 (6)Half the time

0 (0)No

Consensus diagnosis, n (%)

28 (82)Healthy cognition

5 (15)MCIb

1 (3)Mild dementia
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aSmartphone portability=usually has smartphone when leaves home (no=1, in between=2, and yes=3).
bMCI: mild cognitive impairment.

Table 3. Participant baseline validation measures. Includes data from subset (n=34) included in validation analyses.

Scores, mean (SD; range)Validation measures

Neuropsychological test (composite t scores)

52.4 (8.1; 37-67)Global cognition (MMSEa)

52.1 (5.8; 38-66)Attention

54.5 (7.9; 36-74)Processing speed

50.9 (7.3; 38-66)Executive function

47.4 (11.1; 20-75)Memory

50 (9.3; 28-72)Language

Self- and informant-reported functioning

1.5 (2; 0-6)Functional Activities Questionnaire

1.3 (0.2; 1.0-1.8)Everyday Cognition Scale-Short Form

Mood

1.5 (1.5; 0-5)Geriatric Depression Scale (raw score)

52.2 (10.4; 38-76)Geriatric Depression Scale (t score)

Mobility

11 (4; 6-29)Timed up and Go Test (s)

78.5 (20.1; 36-114)Life-Space Assessment

3.8 (1.8; 1-7)Australian Community Participation Questionnaire

aMMSE: Mini-Mental State Examination.

Feasibility and Acceptability (Primary Aim 1)
All 37 (100%) participants who began the study completed the
4-week monitoring period and session 2 without requesting to
withdraw. Participants scored on average 97% (SD 5.7%) on
the comprehension of consent quiz. In total, 2 (5%) participants
had an initial score of 80% (8/10 questions correct), 7 (19%)
scored 90%, and 28 (76%) scored 100% on their first attempt.
The most frequently incorrect item was “Using the mindLAMP
app will help improve my cognitive functioning,” to which 5
(13%) participants answered “yes.” Better performance on the
comprehension of consent quiz was associated with higher
education (rs=0.65; P<.001) and differed across racial groups

(F2,33=8.4; η2=0.34; P=.001), with better performance among
White participants versus Black participants according to post
hoc comparisons (P=.02). When including education as a
covariate, group differences for race remained statistically
significant, though a lower effect size was noted (F2,32=3.3;

η2=0.17; P=.049). Performance on the quiz was not associated
with age, English as a second language, or cognitive status (all
P values >.05).

Satisfaction ratings on the debriefing questionnaire at session
2 (ie, responses to the question “How satisfied are you with the
study team’s explanation of this study? Did the study team
accurately convey what it would be like to participate in this
study during the consent process at your first study visit?”)

revealed high levels of satisfaction. Specifically, 84% (31/37)
of participants reported they were “very satisfied,” and 16%
(6/37) reported they were “satisfied.”

Regarding new issues with or changes to phone use, 92% (34/37)
of participants reported they did not experience any new
problems using their smartphone during the study period.
However, 1 (3%) participant experienced technical issues that
were determined to be unrelated to the study application, 1 (3%)
reported that some of their text messages were disrupted
(unrelated to the study app as we did not collect information
from text messages), and 1 (3%) reported that their phone was
“a little slow and lack of charge.” In total, 97% (36/37) of
participants reported they did not experience any feelings of
being uncomfortable, suspicious, or paranoid due to the study
app running on their smartphone. Although participants were
instructed to go about their daily lives and smartphone use as
they normally would, 46% (17/37) of participants reported there
were major changes in how they used their smartphone during
the study period. Specifically, 3% (n=1) used their phone less
overall, 41% (n=15) charged their phone more, 5% (n=2) carried
their phone less, and 14% (n=5) carried their phone more.

Troubleshooting contacts related to missing GPS data were
infrequent. During the entire study period across 37 participants,
only 6 incidents were logged affecting 5 (14%) unique
participants, with causes including (1) Android phone went into
“safe mode,” (2) location permissions reset from “always” to
“only while using app,” (3) outdated version of mindLAMP
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installed on phone, (4) low battery mode enabled, and (5)
mindLAMP app was accidentally deleted. All incidents were
promptly resolved by the study coordinator remotely by
speaking with the participant over the phone to guide them to
either reconfigure their phone settings or re-download and login
to mindLAMP.

Validity Analyses (Primary Aim 2)

Preliminary Analyses
Examining the untransformed GPS data revealed that on average
each day, participants spent 1074 (SD 192) minutes at home
(ie, about 18 hours), traveled 42,676 (SD 34,694) m, spent time
at 1.56 (SD 0.54) unique locations, and had 423 (SD 352)
minutes of missing GPS data (approximately 29% of the day,
which reflects relatively high data quality and frequency relative
to other smartphone digital phenotyping studies using interval
sampling approaches [111]). Correlations among GPS features
revealed strong associations among features reflecting activity
(distance traveled, radius of gyration, maximum diameter, and
maximum distance from home), which were negatively
associated with features reflecting inactivity (time spent at home
and stationary time) and the 2 indices of physical circadian
routine. Significant locations visited and significant location
entropy were intercorrelated, suggesting a distinct construct
related to location diversity. These associations together support
the conceptual GPS feature categories outlined in Table 1 and
are used throughout to streamline the presentation of results.
Tables S1 and S2 in Multimedia Appendix 2 present descriptive
statistics of GPS data and intercorrelations among all GPS
features.

Relations Between Average Mobility Features and
Measures of Cognition, Mood, and Everyday Function
We predicted significant relations between monthly average
GPS activity features and baseline neuropsychological measures,
mood, and everyday function, such that greater overall mobility

would be associated with better performance on
neuropsychological tests, less depression, and less reported
cognitive and functional decline. Most correlations were in the
predicted direction (Table 4; results for individual
neuropsychological tests and function questionnaires are
reported in Table S3 in Multimedia Appendix 2).

Correlations with neuropsychological composites and individual
tests showed that greater GPS activity was associated with better
scores on the language composite (Table 4) and Digit Span
Forward test (Table S3 in Multimedia Appendix 2). GPS
measures of inactivity and physical circadian routine were
associated with lower language composite and individual test
scores. Of note, correlations between greater physical circadian
routine and lower language scores were the only relations to
survive correction for multiple comparisons (P<.0038; Table
4; Table S3 in Multimedia Appendix 2). Associations between
GPS activity features and the memory composite were not
significant and weak but were in the opposite direction of most
other neuropsychological composites. Analyses of individual
neuropsychological tests showed greater average flight length
was associated with worse delayed verbal recall (r=–0.38, P=.03;
Table S3 in Multimedia Appendix 2), but the correlation
coefficient was not statistically significant after correction for
multiple comparisons.

Regarding mood, more inactivity (eg, more home time), greater
routine, and less location diversity were associated with greater
depression symptoms (Table 4). Less location diversity was
also associated with greater reported functional impairment
(FAQ; r=–0.36, P=.04; Table S3 in Multimedia Appendix 2).
However, the associations between mobility features and
self-reported mood and function did not survive correction for
multiple comparisons. Correlations between GPS features and
self-reported cognitive decline on the Everyday Cognition
Scale-Short Form were weak and not statistically significant
(Table S3 in Multimedia Appendix 2).
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Table 4. Bivariate Pearson correlations between monthly average GPS features and neuropsychological measures (t scores)a.

GDScLanguageMemoryExecutive
function

Processing
speed

AttentionGlobal cognition

(MMSEb)

Category and GPS monthly average feature

Activity

–0.240.33d–0.170.07–0.010.33d0.15Distance traveled

–0.210.34d–0.100.11–0.030.250.21Radius of gyration

–0.200.35d,e–0.120.100.010.33d0.19Maximum diameter

–0.190.43d,e–0.100.0800.270.22Maximum distance home

–0.33d0.38d,e–0.270.03–0.050.260.22Average flight length

0.010.16–0.010.07–0.100.15–0.05Average flight duration

Inactivity

0.38d,e–0.45d,f0.170.160.22–0.11–0.08Home time

0.29–0.220.11–0.020.13–0.28–0.12Probability paused

Routine

0.40d,e–0.51d,f,g0.200.160.16–0.11–0.07Circadian routine

0.38d,e–0.53d,f,g0.190.150.14–0.12–0.08Weekend circadian routine

Location diversity

–0.36d,e0.23–0.25–0.06–0.090.200.04Significant location entropy

–0.35d,e0.07–0.14–0.21–0.020.26–0.20Significant locations visited

Other

–0.39d,e0.37d,e–0.24–0.010.080.47d,f0.28Minutes missing

aData represent effect size as measured by bivariate Pearson correlation coefficients (r), whereby 0.10, 0.30, and 0.50 represent small, moderate, or
large effects, respectively. All neuropsychological measures reflect t scores corrected for age, sex, education, and estimated premorbid IQ.
bMMSE: Mini-Mental State Examination.
cGDS: 15-item Geriatric Depression Scale t score.
dModerate to large effect size.
eP<.05 (2-tailed).
fP<.01 (2-tailed).
gItalics indicate correlation coefficients surviving Bonferroni correction (P<.0038).

Relations Between Average GPS Features and Measures
of Gait Speed, Life Space, and Community Participation
Contrary to our hypotheses, performance on the TUG measure
of gait speed was not associated with any of the average GPS
features (Table 5). By contrast, self-reported measures of
geospatial life space (LSA), and community participation
(ACPQ) were associated with many GPS features. Overall,
greater GPS activity was associated with more self-reported life
space and more community participation, whereas greater

inactivity and physical circadian routine were associated with
less geospatial life space and less community participation.
Correlations between greater radius of gyration, less physical
circadian routine, and greater geospatial life space survived
correction for multiple comparisons (P<.0038; Table 5).
Relations with the ACPQ were driven by the domains of
extended family and friends (eg, participants who reported they
tend to visit friends more often demonstrated significantly higher
levels of GPS activity and lower physical circadian routine
indices; P<.0038; Table S5 in Multimedia Appendix 2).
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Table 5. Bivariate Spearman correlations between average GPS features and measures of gait speed, life space, and community participationa.

ACPQdLSAcTUGbGPS monthly average feature

Activity

Distance traveled

0.34e0.40e–0.16r

.048.02.37P value

Radius of gyration

0.39e0.52 e,f–0.17r

.02.002.35P value

Maximum diameter

0.40e0.44e–0.18r

.02.009.31P value

Maximum distance home

0.42e0.44e–0.11r

.01.008.54P value

Average flight length

0.290.23–0.05r

.10.18.77P value

Average flight duration

–0.090.34e0.01r

.62.052.94P value

Inactivity

Home time

–0.39e–0.42e0.12r

.02.01.49P value

Probability paused

–0.24–0.48e0.13r

.18.004.46P value

Routine

Circadian routine

–0.45e–0.45e0.12r

.008.007.50P value

Weekend circadian routine

–0.48e
–0.50e,f0.18r

.004.002.32P value

Location diversity

Significant location entropy

0.30e0.34e–0.15r

.08.052.40P value

Significant locations visited

0.210.29–0.18r

.23.09.31P value
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ACPQdLSAcTUGbGPS monthly average feature

Other

Minutes missing

0.32e0.160.17r

.07.35.34P value

ar represents effect size as measured by bivariate Spearman correlation coefficient, whereby 0.10, 0.30, and 0.50 represent small, moderate, or large
effects, respectively.
bTUG: Timed Up and Go Test.
cLSA: Life-Space Assessment.
dACPQ: Australian Community Participation Questionnaire.
eModerate to large effect size.
fItalics indicate correlation coefficients surviving Bonferroni correction (P<.0038).

Relations Between GPS Variability and Measures of
Cognition, Mood, and Everyday Function
We predicted a negative relation between day-to-day variability
in GPS features and baseline measures of cognition, mood, and
everyday function, such that greater IIV would be associated
with lower neuropsychological test scores, more depression,
and more reported cognitive and functional decline. Contrary
to our hypotheses, we saw that higher variability in most GPS
features (ie, greater day-to-day iSD in mobility habits) was
associated with better scores on neuropsychological measures
of attention and language, as seen in Table 6 and in Tables S6
and S7 in Multimedia Appendix 2. Correlations between greater
IIV in home time and physical circadian routine and higher
language composite scores survived correction for multiple
comparisons (P<.0038; Table 6). Again, relations with memory
were in the opposite direction, such that higher GPS IIV in

location entropy was associated with a worse memory
composite. Analyses with individual tests showed significant
associations between higher GPS IIV in average flight length
and worse verbal memory and higher GPS IIV in location
entropy and worse visual memory (P<.0038; Table S7 in
Multimedia Appendix 2). Regarding relations with mood, greater
IIV in location diversity was associated with less depression,
though results did not survive correction for multiple
comparisons. This was contrary to expectations but consistent
with the aforementioned results suggesting greater variability
in mobility habits is overall beneficial. GPS IIV was not
significantly associated with self-reported cognitive decline or
functional impairment, though results are directionally
consistent, such that greater IIV was weakly related to less
reported functional decline (Table S7 in Multimedia Appendix
2).
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Table 6. Bivariate Pearson correlations between monthly IIV GPS features and neuropsychological measures (t scores)a.

GDSdLanguageMemoryExecutive
function

Processing
speed

AttentionGlobal cognition

(MMSEc)
Category and GPS monthly IIVb feature

Activity

–0.140.37e,f–0.080.150.010.240.22Distance traveled

–0.070.33e0.050.1200.150.27Radius of gyration

–0.060.37e,f0.030.130.060.200.27Maximum diameter

–0.060.40e,f0.040.120.030.160.27Maximum distance home

–0.280.35e,f–0.32e0.180.040.160.27Average flight length

0.020.18–0.030.10–0.080.060Average flight duration

Inactivity

–0.31e0.64 e,g,h–0.180–0.130.150.23Home time

–0.100.29–0.090.13–0.100.270.17Probability paused

Routine

–0.200.59 e,g,h–0.020.070.100.170.15Circadian routine

–0.280.55 e,g,h–0.020.04–0.030.130.16Weekend circadian routine

Location diversity

–0.47e,g0.35e,f–0.45e,g–0.090.060.250.01Significant location entropy

–0.36e,f0.32e–0.13–0.33e–0.070.11–0.21Significant locations visited

Other

–0.220.41e,f00.03–0.130.060.29Minutes missing

aData represent effect size as measured by bivariate Pearson correlation coefficients (r), whereby 0.10, 0.30, and 0.50 represent small, moderate, or
large effects, respectively. All neuropsychological measures reflect t scores corrected for age, sex, education, and estimated premorbid IQ. Table S6 in
Multimedia Appendix 2 gives exact P values.
bIIV: intraindividual variability.
cMMSE: Mini-Mental State Examination.
dGDS: 15-item Geriatric Depression Scale t score.
eModerate to large effect size.
fP<.05 (2-tailed).
gP<.01 (2-tailed).
hItalics indicate correlation coefficients surviving Bonferroni correction (P<.0038).

Exploratory Analyses

Relations Between GPS Metrics and Participant Intrinsic
and Extrinsic Factors
To inform future studies in the selection of covariates or
moderating variables, we conducted exploratory correlations
between GPS average and IIV features and various participant,
environmental, and contextual factors (Tables S8 and S9 in
Multimedia Appendix 2). Average GPS features were unrelated
to several sociodemographic factors, including age, sex, and
cohabitation status (all P values >.05). Higher education was
associated with less location diversity only (r=–0.35; P=.04)
but was not significant after correction for multiple comparison.
By contrast, lifetime annual income and native language status
appeared to be more relevant. Overall, higher lifetime income
and native English language status were associated with greater

levels of GPS activity, less routine, and greater location diversity
(0.36≤|r|≤0.55). The association between higher lifetime income
and greater GPS activity measures (radius of gyration and
maximum distance from home) remained significant after
correction for multiple comparisons (P<.0038; Table S8 in
Multimedia Appendix 2).

Technology factors were largely unrelated to average GPS
features. Phone type (iPhone vs Android) was unrelated to all
features except for the overall number of minutes missing;
iPhone users had significantly less missing GPS data than
Android users, and the relation remained significant after
correction for multiple comparisons (r=–0.64; P<.0038). More
habitual smartphone use was associated with less location
diversity only (r=–0.40; P=.02), though this relation did not
survive correction for multiple comparisons. Whether or not
participants typically carry their phone when leaving home
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(smartphone portability) was unrelated to all average GPS
features, as was digital literacy as measured by the Mobile
Device Proficiency Questionnaire (all P values >.05). Regarding
the impact of COVID-19, individuals who reported more
COVID-19–related isolation (ie, due to limited or canceled
social gatherings) demonstrated significantly less location
diversity (r=–0.51; P<.0038), whereas those who reported a
greater expansion in mobility habits due to COVID-19
demonstrated more location diversity (r=0.34; P=.047), though
this latter relation was not significant after correction for
multiple comparisons.

One-way ANOVA of average GPS features was used to explore
group differences across categorical demographic variables
(race, occupational status, and season), with the Welch test for
unequal group variances. Group differences for race (Black,
Asian, and White) were observed only on the minutes missing

feature (F2,30=6.32; η2=0.30; P=.005), with Black participants

having greater amounts of missing GPS data than White and
Asian participants according to post hoc comparisons (P=.003
and P=.02, respectively). A follow-up chi-square test was
performed to examine the relationship between race and phone
type given prior findings that Android users have greater missing
data than iPhones [114]. The relation was significant, such that
a greater proportion of Black participants owned Androids,

χ2
2=6.9, P=.03 (N=33), suggesting that group differences in

missing data could be related to phone type.

No group differences in average GPS features were observed
according to current occupational status (eg, retired and working
full vs part-time). By contrast, several activity features were
significantly different across the winter, fall, spring, and summer

seasons (4.01≤F3,30≤8.8; 0.18≤η2≤0.28; all P values <.05).
According to post hoc comparisons, these differences were
driven by significantly greater GPS activity in the summer
versus fall months (Figure 3).

Figure 3. One-way ANOVA of GPS activity features by season.

Spearman correlations between GPS IIV features and the
participant factors assessed earlier are detailed in Table S9 in
Multimedia Appendix 2. Similar to the results with average
GPS metrics, relevant sociodemographic factors appeared to be
income and native language status. Higher lifetime income and
native English language status were associated with more
variability in activity, routine, and location diversity features
(0.35≤|r|≤0.56), with associations between higher income and
greater IIV in activity (radius of gyration, maximum diameter,
and maximum distance from home) surviving correction for
multiple comparisons (P<.0038).

Phone type was more prominently related to GPS IIV measures
than GPS average measures; iPhone users showed greater GPS
IIV than Android users on several GPS features (0.34≤r≤0.52),
though only greater GPS IIV in minutes missing survived
correction for multiple comparisons (P<.0038). Of note, iPhone
ownership was also positively correlated with income (r=0.49;
P=.005), making it difficult to determine whether higher levels
of IIV among iPhone users relate to differences in phone type
or to behavioral differences in lifestyle afforded by higher
income. Regarding other technology factors, habitual
smartphone use and smartphone portability were unrelated to
GPS IIV metrics, whereas digital literacy was related to more

JMIR Hum Factors 2024 | vol. 11 | e59974 | p. 17https://humanfactors.jmir.org/2024/1/e59974
(page number not for citation purposes)

Hackett et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


variability in routine only (r=0.34; P=.047)—though this relation
did not survive correction for multiple comparisons. Individuals
who reported more COVID-19–related social isolation had
significantly lower IIV in location diversity (ie, more day-to-day
consistency in the number of locations visited; r=–0.55;
P<.0038), whereas those who reported a greater expansion in
mobility habits due to COVID-19 had greater IIV in location
diversity (r=0.37; P=.03), though this latter relation was not
significant after correction for multiple comparisons.

One-way ANOVA of GPS IIV features across categorical
demographic variables revealed a significant difference across
racial groups on only 1 measure—IIV for flight length

(FW2,18.63=11.96; η2=0.12; P<.001). This group difference was

driven by lower IIV in Asian participants compared with both
Black participants and White participants according to post hoc
tests. Effects of current occupational status were observed on

several IIV metrics (5.28≤F2,31≤33.90; 0.12≤η2≤0.35; all P
values <.05), such that retired participants demonstrated
significantly greater IIV in mobility habits compared to those
working full- or part-time (Figure 4). Consistent with the results
of GPS average metrics, several GPS IIV metrics differed
according to the season of study participation, with significantly
more IIV in activity features observed during summer months
versus the fall and spring months (2.41≤F3,30≤3.78;

0.19≤η2≤0.27; all P values <.05).

Figure 4. One-way ANOVA of GPS intraindividual variability features by occupational status.

Relative Mobility Patterns
A GMM, MDS approach was used to derive a relative mobility
feature (MDS1), including all GPS features simultaneously.
This allowed us to explore how similarity in mobility patterns,
as reflected through a 1D value, related to validators of
cognition, function, and mood. Relative mobility patterns were
moderately associated with a cognitive measure of language
(|r|=0.36; P=.04) and a global cognitive screener (|r|=0.31;
P=.08; Table S10 in Multimedia Appendix 2). Relative mobility
patterns were also associated with depression (|r|=0.39; P=.02)
and community participation (|r|=0.51; P=.002). Of note, only
the relation between MDS1 and community participation
(ACPQ) survived correction for multiple comparisons
(P<.0029). While the MDS1 feature represents a linear contrast

combining multiple individual GPS features that excel at
differentiating mobility patterns across the sample, this comes
at the cost of interpretability of the associations related to MDS1
(eg, positive vs negative correlation coefficients are not
meaningful); however, these results provide additional
converging evidence that individuals with similar mobility
profiles may have similar levels of underlying cognitive ability,
depression, and community participation.

Discussion

Principal Findings
This study investigated a 4-week smartphone digital phenotyping
protocol as a novel method to assess everyday cognition,
function, and mood in a cohort of 37 older adults. Our
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preliminary, proof-of-concept results suggest that theoretically
informed digital phenotypes of mobility are feasibly captured
from older adults’personal smartphones and are associated with
clinically relevant data pertinent to cognitive aging and
AD/ADRD. Findings and implications provide key insights to
inform the design and interpretation of future studies using this
method in larger, more diverse cohorts.

One of our primary aims was to examine the feasibility and
acceptability of smartphone digital phenotyping among older
adults. All participants completed the 4-week monitoring period
without dropping out, and 97% (36/37) reported no feelings of
discomfort during debriefing procedures. By contrast, almost
half (17/37, 46%) reported changes in how they used their
smartphone, with 41% (15/37) endorsing charging their phone
more frequently. Battery drain was a communicated risk and is
common in high-frequency continuous data collection, including
GPS [111]. Increased phone charging behavior may limit the
naturalistic aspect of this approach and will be important to
address in future designs—particularly if battery power is
considered as a digital biomarker in and of itself. Future studies
should explore whether lower sampling frequencies are
sufficient, as this can be adjusted via the LAMP platform and
would lead to less battery drain. It is also likely that advances
in smartphone battery life span will ultimately circumvent this
issue; in the interim, participants may be provided with portable
batteries for daily outings.

We were also interested in how participants would respond to
and comprehend complex technical details of this study.
Participants demonstrated good comprehension of study
procedures, as demonstrated by an average score of 97% on the
comprehension of consent quiz, and all reported satisfaction
with the study team’s initial review of study procedures. These
findings are encouraging given the dearth of studies
investigating older adults’ attitudes and concerns about passive
sensing technologies [78,115] and suggest that our upfront
efforts to enhance privacy, security, transparency, and
comprehension were effective [79]. However, despite high
overall comprehension, we observed that higher education and
identifying as White versus Black were associated with better
performance on the comprehension of consent quiz—suggesting
the language used in our materials may not be culture-free and
should be revised using co-design or focus group approaches
with increasingly diverse perspectives. Importantly, the most
frequently incorrect item on the quiz pertained to potential
benefits of study participation (“Using the mindLAMP app will
help improve my cognitive functioning,” yes or no). Clear
communication of potential benefits in research is a core ethical
requirement, and future study materials should clarify
expectations for potential benefits to facilitate trust, particularly
among historically marginalized groups [116-119].

Regarding our second primary aim of establishing preliminary
validity, we observed converging support that unobtrusively
obtained movement trajectories from smartphones are related
to established clinically relevant variables, including cognition,
function, and mood. This is not surprising but is highly
encouraging. Movement trajectories reflect many facets of
everyday cognition, including the ability and motivation to
travel outside the home, the degree of someone’s spatial routine,

number of unique locations someone can visit, and the total
amount and duration of movement—behaviors that require
abundant cognitive and psychological resources. Here,
individuals with better cognition, less functional impairment,
and less depression did, in fact, demonstrate greater overall
mobility according to several GPS features. Specifically, they
traveled farther, spent less time at home, and had greater
diversity in the locations they visited. Although these
associations did not remain statistically significant after
correction for multiple comparisons, these moderate-level effects
in a relatively small sample are encouraging as they are
consistent with our hypotheses and with prior studies showing
greater physical activity, less time at home, greater life space
(the extent of movement through the environment during daily
functioning), and engagement in a variety of activities
(environmental complexity) are associated with better cognition,
less depression, and reduced risk for MCI and dementia or
AD/ADRD [66,103,104,120-128].

Inconsistent with our hypotheses, individuals with better
cognition demonstrated significantly greater day-to-day
variability in GPS features and less physical circadian routine,
and these associations did survive correction for multiple
comparisons. We also saw that greater mobility variability and
less routine were associated with less depression, although
associations did not survive correction for multiple comparisons.
Regarding depression, it is conceptually reasonable that more
varied mobility habits could be protective against depression,
and this has been demonstrated in at least 1 study of younger
adults where lower location diversity was associated with more
depression symptoms [129]. With respect to the significant
negative associations between cognition and routine, it is
possible that the older adults in our cohort with more cognitive
difficulties intentionally engaged in more predictable and less
demanding daily activities to compensate for underlying mild
difficulties, leading to more consistent physical circadian
routines and lower day-to-day variability in mobility habits.
This is a pattern identified in the literature and is often
recommended as an intervention in clinical practice [130-134].

The VIBE model predictions regarding variability were informed
by observations that individuals with cognitive impairment
demonstrate increased IIV compared with healthy controls while
performing single, standardized tasks in the clinic or laboratory
where task demands are the same for everyone. Greater IIV on
constrained tasks reflects an inability to maintain consistent
levels of performance [7,135,136]. This study instead involved
unconstrained mobility habits, which individuals may modify
to compensate for cognitive difficulties. Therefore, the
observation of GPS IIV as indicative of positive rather than
negative outcomes may be specific to unconstrained geospatial
routines or to our relatively functionally healthy sample. We
may still observe that greater IIV associates with worse
outcomes when considering more fine-grained digital
biomarkers (eg, diurnal phone use patterns and
accelerometer-based sleep estimates) that are relatively more
constrained, as has been identified in other studies examining
IIV in gait speed, medication-taking routine, and computer use
[137-139]. We may also see that greater IIV in broad everyday
behaviors is a marker of resilience early on but becomes
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maladaptive in later stages of neurocognitive decline. Larger
samples with greater heterogeneity in cognitive ability are
needed to answer this question, in addition to longitudinal
designs that would enable monitoring of within-person IIV
trends over time. In the meantime, our relatively cognitively
healthy sample provides insights into how variability behaves
in early stages and unconstrained settings. Consistent with past
reports of significant task and timescale effects on IIV [140],
IIV in continuous mobility trajectories may be mechanistically
distinct from IIV in constrained settings.

Concurrent validity was supported by strong and significant
associations between mean-level GPS features and baseline
scores on the LSA and the ACPQ—self-report measures of
geospatial life space and community activity participation,
respectively. These 2 constructs are highly relevant in the
context of aging and AD/ADRD and represent key measures
of risk. The LSA measures the extent, frequency, and
independence of movement within and outside the home.
Constricted life space has been associated with increased risk
of AD, MCI, and cognitive decline in racially diverse groups
and may represent an early functional marker of prodromal
decline as individuals compensate for early subtle difficulties
and limit their range of movement or activity complexity
[103,104,130]. Social engagement—particularly leaving the
home to visit friends—protects against social isolation, promotes
cognitive reserve, and represents a complex activity requiring
cognitive flexibility [141-145]. Thus, the ability to unobtrusively
and longitudinally measure these key risk and resilience factors
without the burden or bias of self- or informant-report represents
a noteworthy application for smartphone-derived mobility
trajectories. Minimal associations were identified between GPS
features and the TUG measure of gait speed. It is possible that
low heterogeneity in TUG scores or small variations in
the administration of the TUG played a role. It is also likely
that gait speed and coordination are lower-level features of
mobility that are independent of broader mobility habits, at least
within this sample of functionally independent older adults.

We examined many individual and contextual influences on
mobility features to inform future studies in selecting covariates
or moderating factors. This is a critical open question in the
field of digital phenotyping [66], and our preliminary results
provide important insights into which sociodemographic,
contextual, and technological factors should be considered when
interpreting these data. Age, education, sex, race, and
cohabitation status appeared to be minimally associated with
most mean-level and variability metrics, providing partial
support for the objectivity of digital phenotyping features.
Nonetheless, other sociodemographic factors, including higher
lifetime income and native English language status, were
moderately associated with several mobility metrics that appear
to be advantageous (ie, greater activity and greater IIV). This
could reflect an association between social determinants of
health and access to transportation, opportunities for
socialization outside of the home, or an ability to engage in
spontaneous activities—and may suggest mechanisms for
income and acculturation as resilience factors.

Other extrinsic factors with relatively clear and interpretable
effects included season, COVID-19–related effects, and

occupational status. Participants demonstrated greater activity,
less home time, and more mobility variability in the summer
months, which is reasonable given the increased leisure activities
that typically occur in the summer. Therefore, seasonal
differences are relevant if interpreting data in pre-post designs,
suggesting investigators should aim to control for season or
re-evaluate during the same season if possible. Participants
reporting more COVID-19–related isolation visited fewer
locations, whereas those reporting more COVID-19–related
mobility expansion visited more. Individuals who were retired
demonstrated more variable mobility habits than those working
full or part time, which aligns with differential degrees of
consistency depending on occupational status. In addition to
shedding light on which factors are relevant when interpreting
digital phenotyping data, these associations provide additional
validation for the mobility features in this study.

Phone type was unrelated to all mean-level GPS metrics except
for the number of minutes of missing data, which was
significantly lower for iPhones. This finding is consistent with
a previous study by Kiang et al [114] that identified lower rates
of missing GPS data among iOS users and overall bodes well
for the generalizability of mean-level metrics across different
phone types and operating systems. Missing data were also
higher among Black participants, which could be due to a higher
proportion of Android ownership among Black participants in
our study. Thus, controlling for phone type may be important
when interpreting the minutes of missing data feature. iPhone
users also demonstrated more variability in most GPS features,
although only the missing data feature remained statistically
significant after correction for multiple comparisons. Given
iPhone ownership was positively associated with income, it is
difficult to interpret whether increased variability among iPhone
users was related to operating system factors, to aspects of
resilience associated with income, or whether this reflects a
spurious finding. Future studies with larger sample sizes should
work to clarify these questions.

In considering the neuropsychological correlates of our GPS
features, relations with cognition were strongest and most
consistent for measures of language. In fact, relations between
GPS features and the language composite were the only ones
to survive correction for multiple comparisons (ie, less overall
physical circadian routine, greater IIV in circadian routine, and
greater IIV in home time were all strongly [|r|>0.5] associated
with the language composite at P<.0038). This was somewhat
unexpected given language abilities are typically not as critical
to the completion of everyday activities compared to domains
such as executive functioning [146,147]. Nonetheless, intact
language functioning (specifically semantic access and retrieval)
relies on left temporal and prefrontal integrity and connectivity,
which are highly relevant neuroanatomical regions in the
pathogenesis of AD. Interestingly, relations between GPS
features and measures of memory were in the opposite direction
compared to other cognitive domains; for example, more
day-to-day variability in average flight length was associated
with worse delayed memory performance. This finding may
reflect inefficient planning and daily errors resulting in
occasional backtracking when visiting common locations due
to forgotten items. In general, differential relations between
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GPS features and measures of memory and language—2
cognitive domains implicated in AD pathology—suggest
relations between GPS features and cognitive abilities may not
be as straightforward as our model predicted. Future studies
should continue to investigate whether mobility phenotypes are
uniquely related to specific neuropsychological and
neuroanatomical correlates, rather than focus on a global
cognitive composite. This may involve developing even more
fine-grained GPS features to capture distinct functional
difficulties in everyday life (eg, backtracking and repetitive
motions).

Limitations and Strengths
Our study has several limitations that are worth noting. Our
relatively small sample size of 37 individuals coupled with a
relatively large number of analyses limits generalizability; thus,
findings should be considered preliminary and proof-of-concept.
Digital phenotyping is a new research area with relatively few
established standards, yet preliminary validation of digital
phenotypes has been reported in samples of under 50 participants
[61,73,148,149] for ≤30 days of data collection [73,150-152].
Another major limitation is the restricted diversity of our cohort
in terms of cognition and diagnostic severity (which precluded
investigation of diagnostic group differences), demographics
(ethnicity, education, and socioeconomic status), and severity
of depressive symptoms. Furthermore, all participants lived
within driving distance of Temple University and therefore
reflected an urban and suburban cohort. In addition, individual
data-processing exclusions were required to account for
unanticipated travel and health events. Given our aim of
establishing preliminary validity, there was a need to ensure
participants met strict inclusion criteria, which included relative
stability in their health and physical location. This level of
control and oversight may be unrealistic in larger, longitudinal
studies and may need to be replaced by advanced statistical
methods in the future [153]. Finally, it is worth mentioning that
mobility traces from smartphone GPS sensors are a proxy for
actual movement trajectories and depend upon the participant
having their smartphone on their body, requiring multiple
imputation and inference for missing GPS data before feature
calculation during preprocessing [109]. It is also critical that
participants are the unique users of their smartphones, as others
have mentioned issues with shared devices [154,155]. Sensors
worn on the body may provide more accurate and reliable
measures of mobility patterns but present other drawbacks (eg,
may be perceived as more intrusive by participants, may disrupt
existing habits, and are typically costly).

This study has several strengths. Our cohort was well
characterized compared to many prior digital phenotyping
studies, including a comprehensive neuropsychological battery
with 10 individual neurocognitive tests, objective and subjective
validation measures, and application of combined actuarial and
consensus diagnosis criteria to accurately classify participants.
Our study design and hypotheses were theoretically informed
by a conceptual model, which improves the interpretability and
replicability of our findings. Toward this aim, we examined a
range of interpretable mobility features (ie, 13 monthly average
features and 13 monthly iSD features) with correction for
multiple comparisons before reducing features into a principal

component (MDS1). Results from the singular MDS1
component provided additional evidence that individuals with
similar cognitive, functional, and mood profiles may
demonstrate similar mobility profiles. Although many GPS
features were intercorrelated, the presence of differential and
unique correlations suggests individual features may be useful
in clarifying specific behaviors and should be preserved as we
continue to learn more about what these features signal. In
addition, relative mobility profiles similar to the singular MDS1
component may be useful in identifying and classifying
individuals with similar levels of underlying community
participation and functional resilience. With regard to our
technical protocol, the use of an open-source platform and a
publicly available data processing script facilitates replicability,
which is key to ongoing validation efforts [156]. Attempts at
minimizing missing data using an automated checking script
represent another strength and should be incorporated in future
studies given the impact of missing data on subsequent findings
[66]. Finally, our device-agnostic approach leveraging
personally owned smartphones versus a study-issued device
represents a notable strength as it promotes the naturalistic,
unobtrusive nature of this method and affords increased
scalability.

Future Directions
Future studies with larger and more diverse cohorts will be
critical to replicate the present findings and address open
questions. Given the lack of accessible and unbiased diagnostics
available to individuals from low-income and marginalized
groups [53-55,157], increased diversity in terms of race,
ethnicity, educational attainment, and socioeconomic status is
a priority for subsequent studies. Validating this method in more
clinically heterogeneous samples will be critical to evaluate its
ability to distinguish between age-related cognitive decline,
neurodegenerative decline, and other medical or psychiatric
conditions, and between various clinical and biological subtypes
of dementia and ADRD. Both activity-level and IIV metrics
should be evaluated, as variability appears to be fundamentally
distinct from mean-level metrics and relates to AD risk [158].
Next steps will also investigate relations between validation
measures and other sensors (accelerometer, device state, and
steps) to extend the present findings and test our theoretical
framework in behavioral features other than mobility
trajectories. Machine learning or cluster approaches integrating
multiple sensor streams may be helpful in determining clinically
useful digital phenotypes, thereby reducing the analytic burden
and narrowing the focus on clinically relevant, nonredundant
features. Additional open questions include the test-retest
reliability of digital phenotypes; the incremental utility of
ecological momentary assessment, which can provide context
to passive data [7,49,159]; determining the minimum necessary
sensor sampling rate and duration to reduce battery drain; and
evaluating within-day variability, diurnal patterns, and time of
day effects on GPS features [26,49,75,138,160].

Because there is no ground truth for the application and
interpretation of digital phenotyping data in aging and ADRD
populations, additional studies are needed so that results can be
compared across samples and insights can be consolidated to
inform gold-standard approaches and normative data. As the
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field continues to evolve, it is likely that longitudinal monitoring
of within-person fluctuations will be the ideal approach to
capture individually relevant changes rather than population-
or group-based approaches [7,63,156,161]. This is particularly
relevant in the context of first-line primary care screening and
ADRD clinical trials, where scalable risk detection, trial
screening, and treatment response measures are direly needed.
However, with longitudinal designs and increased sample sizes,
it will be important to consider whether the data storage,
processing, and interpretation burdens justify breaking from the
status quo. Workflows that enhance the efficiency and scalability
of this method will be critical, not just for research participants
and patients but also for those collecting and interpreting the
data [7,80,111].

Conclusions
As the population of older adults continues to rise, efforts to
identify new tools to detect risk for future cognitive decline and
measure treatment response are critical, particularly as new
pharmacological interventions gain approval. Current gold

standard methods are costly, burdensome, not widely accessible,
and not part of routine clinical care. Measures that are sensitive
to cognitive decline that can be passively and affordably
integrated into everyday life without burden, disruption, or
self-report bias are needed to serve as a first-line approach. Our
study demonstrates that unobtrusively obtained GPS movement
trajectories from personal smartphones may in the future be one
such first-line approach, enabling clinicians and researchers to
efficiently assess cognitive status, mood, and dementia risk on
a broader scale. Individuals with at-risk data profiles may
ultimately be referred for more comprehensive evaluation and
directed toward appropriate intervention or research settings,
leading to cost savings, reduced burden, and faster access to
care. Much work remains to be done before we determine how
smartphone digital phenotyping can be integrated into our
current health care system; however, preliminary results suggest
that it is a worthwhile endeavor and serve to inform follow-up
studies that are necessary to answer important, outstanding
questions.
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