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Abstract

Background: Dispensing errors significantly contribute to adverse drug events, resulting in substantial health care costs and
patient harm. Automated pill verification technologies have been developed to aid pharmacists with medication dispensing.
However, pharmacists’ trust in such automated technologies remains unexplored.

Objective: This study aims to investigate pharmacists’ trust in automated pill verification technology designed to support
medication dispensing.

Methods: Thirty licensed pharmacists in the United States performed a web-based simulated pill verification task to determine
whether an image of a filled medication bottle matched a known reference image. Participants completed a block of 100 verification
trials without any help, and another block of 100 trials with the help of an imperfect artificial intelligence (AI) aid recommending
acceptance or rejection of a filled medication bottle. The experiment used a mixed subjects design. The between-subjects factor
was the AI aid type, with or without an AI uncertainty plot. The within-subjects factor was the four potential verification outcomes:
(1) the AI rejects the incorrect drug, (2) the AI rejects the correct drug, (3) the AI approves the incorrect drug, and (4) the AI
approves the correct drug. Participants’ trust in the AI system was measured. Mixed model (generalized linear models) tests were
conducted with 2-tailed t tests to compare the means between the 2 AI aid types for each verification outcome.

Results: Participants had an average trust propensity score of 72 (SD 18.08) out of 100, indicating a positive attitude toward
trusting automated technologies. The introduction of an uncertainty plot to the AI aid significantly enhanced pharmacists’ end
trust (t28=–1.854; P=.04). Trust dynamics were influenced by AI aid type and verification outcome. Specifically, pharmacists
using the AI aid with the uncertainty plot had a significantly larger trust increment when the AI approved the correct drug
(t78.98=3.93; P<.001) and a significantly larger trust decrement when the AI approved the incorrect drug (t2939.72=–4.78; P<.001).
Intriguingly, the absence of the uncertainty plot led to an increase in trust when the AI correctly rejected an incorrect drug, whereas
the presence of the plot resulted in a decrease in trust under the same circumstances (t509.77=–3.96; P<.001). A pronounced
“negativity bias” was observed, where the degree of trust reduction when the AI made an error exceeded the trust gain when the
AI made a correct decision (z=–11.30; P<.001).

Conclusions: To the best of our knowledge, this study is the first attempt to examine pharmacists’ trust in automated pill
verification technology. Our findings reveal that pharmacists have a favorable disposition toward trusting automation. Moreover,
providing uncertainty information about the AI’s recommendation significantly boosts pharmacists’ trust in AI aid, highlighting
the importance of developing transparent AI systems within health care.
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Introduction

Background
Pharmacists play a pivotal role in ensuring patients receive the
correct medications as prescribed by health care providers. This
involves a critical verification task, where pharmacists must
match the medication dispensed in filled bottles with the
prescription labels. Dispensing errors, defined as instances when
patients receive the wrong drug or dosage, significantly
contribute to preventable adverse drug events, leading to
approximately 700,000 emergency department visits and
100,000 hospital admissions each year [1]. Several challenges
contribute to these errors including, but not limited to,
limitations in current technology; lack of standardized
procedures; and the high cognitive workload imposed on
pharmacy staff, who often manage numerous tasks
simultaneously [1-4]. To enhance patient health outcomes,
reduce unnecessary health care costs, and alleviate the burden
on pharmacists, it is essential to develop and implement reliable
tools that minimize the risk of dispensing errors [5].

Since the 1990s, the implementation of barcode scanning
systems has been advocated as a means to reduce medication
errors [6]. The adoption of such systems within pharmacies and
broader health care environments has led to a notable reduction
in medication errors [7-10]. Nevertheless, research indicates
that barcode scanning systems are not immune to workarounds
and human errors [11-13]. Moreover, these systems do not
adequately address the challenges faced by overburdened
pharmacists [14-17].

In response to these challenges, pill counting and verification
or recognition systems using image classification technologies
have emerged [18-21]. Innovations like Eyecon and VIVID use
vision-based methods to count medications placed on the tray.
More recently, advancements have been made in automated pill
identification through feature engineering. For example, Yu et
al [22] and Yu et al [23] proposed an automatic pill recognition
method based on pill imprints, achieving an accuracy of 86.01%
and 90.46%, respectively. Caban et al [18] used a modified
shape distribution technique to determine the shape, color, and
imprint of a pill to identify the drug. The proposed technique
was evaluated with 568 of the most prescribed drugs in the
United States and achieved a 91.13% accuracy.

The advent of deep learning has further enhanced the capabilities
of automated pill recognition systems [5,24]. For instance,
Larios Delgado et al [5] developed a pill recognition method
using 2 deep learning models. They used a deep convolutional
neural network model for pill blob detection to isolate the pill
from the background and then passed the output to a deep
learning–based classifier to identify the 5 most likely pills with
94% accuracy [5]. Similarly, Wong et al [25] proposed a deep
convolutional network model and achieved a mean accuracy of

95.35%. Lester et al [24] trained a ResNet-18 deep learning
model to predict the labeled features of a medication product
using an image showing medication inside a filled prescription
bottle. In a test set containing 65,274 images of 345 unique oral
drug products, the overall macroaverage precision, that is, the
mean of precision values for each class, was 98.5%.

Despite the impressive strides in model accuracy, realizing the
potential of these technologies is only possible if people
establish appropriate trust in them. Trust in automation, defined
as “the attitude that an agent will help achieve an individual’s
goals in situations characterized by uncertainty and
vulnerability” [26], is one of the most crucial factors determining
the use of automation [27,28]. There is a growing body of
research examining people’s trust in autonomous and robotic
technologies in various domains, including transportation
[29-31], health care [32,33], education [34], and defense [35,36].
In addition, researchers have developed various methods to
enhance people’s (proper) trust in automation or autonomy
[37,38], including the use of various graphical representations
[37,39-42].

For example, a military perimeter defense experiment conducted
by Mercado et al [43] aimed to investigate the role of intelligent
agent transparency on operator trust. Participants were tasked
with selecting optimal routes for unmanned vehicles, assisted
by an artificial intelligence (AI) agent. The AI agent operated
at three levels of transparency: (1) basic details only; (2) basic
details supplemented with reasoning and rationale; and (3)
comprehensive information, including basic details, reasoning,
rationale, and uncertainty indication, in a text description. They
observed a positive correlation between transparency levels and
participant trust. They concluded that providing operators with
the agent’s reasoning process and uncertainty metrics fostered
a deeper understanding of the system’s capabilities, thereby
enhancing trust and increasing usability [43]. This finding
emphasizes the importance of transparent AI systems in
supporting effective human-machine collaboration.

Another study investigated the impact of visual explanations
on human trust in machine learning systems [40]. Participants
performed leaf classifying tasks with or without visual
explanations. The leaf examples were presented in 2 formats:
images and feature charts. Results revealed that providing visual
explanations enhanced trust and confidence in participants’
decision-making. Interestingly, the feature charts were designed
with intentional omissions of detailed explanations of features
to prevent information overload. However, this simplification
led participants to struggle to interpret the charts, and expert
users expressed a need for more comprehensive feature
descriptions to inform their decisions [40]. This insight reveals
the importance of integrating visual explanations with a
thoughtfully managed information load for appropriate human
trust.
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Signal detection theory (SDT) is commonly used to study trust
in automation by modeling the reliability of automated systems
used by human operators. SDT evaluates how AI systems
distinguish signals from noise, categorizing the state of the
world as either “signal present” or “signal absent.” Based on
SDT categorization, AI performance results in 4 outcomes: hit
(error flagged correctly), miss (error not flagged), false alarm
(FA; no error, but flagged incorrectly), and correct rejection
(CR; no error and no flag). Correct identifications (hit and CR)
increase trust, while incorrect ones (FA and miss) decrease trust
[44,45]. Research indicates that FAs typically reduce trust less
than misses, prompting designers to design more liberal systems
(ie, more willing to flag an error) with higher rates of FAs to
ensure potential issues are flagged [46-48]. In the context of
pill dispensing, FAs may lead to minor disruptions, while misses
could lead to dispensing errors, indicating that a more liberal
AI system prioritizing safety by minimizing misses is beneficial.

Objectives
This study, therefore, aimed to explore pharmacists’ trust in
automated pill verification technology, which is designed to
assist with the critical task of medication dispensing.
Specifically, we aimed to study the role of presenting AI
uncertainty information on pharmacists’ trust in the system.
The primary hypothesis was as follows:

• H1: Presenting AI uncertainty information of predicted
probability in a visualization format will increase AI
transparency, leading to enhanced pharmacists’ trust in pill
verification technology.

Beyond this primary focus, we also explored how pharmacists’
trust behavior varied across different AI performance patterns
categorized by SDT. Drawing from these arguments, we derived
the following hypotheses:

• H2: Misses would result in a more significant decline in
trust compared to FAs.

• H3: Furthermore, given the differing consequences
associated with the 4 SDT patterns, we speculate that
presenting AI uncertainty information might have varying
effects depending on the specific type of patterns.

Methods

Ethical Considerations
This research was exempt from institutional review board
oversight by the University of Michigan (HUM#00213493).
Before participating, participants signed an electronic informed
consent form, and all data were collected anonymously.
Participants received US $150 upon completion of the study.

Recruitment and Participants
Recruitment emails were dispatched to pharmacists through the
Minnesota Pharmacy Practice-Based Research Network and
the University of Michigan College of Pharmacy Pharmacist
Preceptor Network. To meet the inclusion criteria, pharmacists
were required to (1) be licensed pharmacists in the United States,
(2) be aged at least 18 years, and (3) have access to a laptop or
desktop computer with a webcam. Pharmacists who (1) require
assistive technology to use the computer; (2) wear eyeglasses
with more than one power; (3) have uncorrected cataracts,
intraocular implants, glaucoma, or permanently dilated pupils;
and (4) have eye movement or alignment abnormalities (eg,
lazy eye, strabismus, nystagmus) were excluded from
participation in the study (Figure 1). A total number of 30
licensed pharmacists in the United States completed the study.
Table 1 shows the demographic information.

Figure 1. Participant recruitment timeline.
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Table 1. Participant demographic information (n=30).

ValueCharacteristic

39.40 (11.23)Age (years), mean (SD)

Sex, n (%)

17 (57)Female

13 (43)Male

Practice setting, n (%)

15 (50)Community pharmacy

6 (20)Hospital pharmacy

1 (3)Specialty pharmacy

1 (3)Grocery store or mass merchandise pharmacy

7 (23)Other

Years worked, n (%)

7 (23)1-5

7 (23)6-10

10 (33)11-20

6 (20)21 or more

AI Model
The AI model used in this study is a Bayesian neural network
that predicts the National Drug Code (NDC), a unique identifier
assigned by the Food and Drug Administration to catalog drug
products in the United States [49,50]. The Bayesian neural
network used a technique known as random dropout [51],
applied to a ResNet-34 convolutional neural network
architecture [52] to estimate the probability associated with
each NDC (ie, each class). The model produced 50 different
predictions, where each prediction is a probability vector that
quantifies the probabilities that an input belongs to each of the
NDCs. The predicted NDC was then attained by finding the
highest average probability derived from the 50 predictions.

To train the AI model, we acquired a dataset of 432,974 images
from a mail-order pharmacy in the United States. This pharmacy
uses a robotic system that counts pills, fills and labels the bottle,
captures the images of the contents, and seals the bottle with a
cap. The image dataset consists of 1 year’s worth of
robot-captured images of oral medications, such as tablets and
capsules, inside prescription bottles filled by the robotic system.
Each image in the dataset is associated with an NDC label and
various attributes of color, shape, size, manufacturer, tablet
scoring, and imprint. The number of images available for each
NDC varied, ranging from 3 to 12,105, with a median of 540
(IQR 257-1291). The medications featured in these datasets
were classified into 12 different colors and 7 distinct shapes.
The detailed classification is shown in Table 2.
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Table 2. Percentage of medication characteristics featured in the training dataset (N=260,119).

Dataset, n (%)Characteristics

Colors

109,487 (42.1)White

32,041 (12.3)Yellow

23,585 (9.1)Pink

18,541 (7.1)Orange

15,289 (5.9)Multicolor

13,644 (5.2)Green

13,474 (5.2)Red

12,452 (4.8)Blue

9792 (3.8)Brown

8184 (3.1)Purple

1858 (0.7)Turquoise

1772 (0.7)Gray

Shapes

128,947 (49.6)Round

86,844 (33.4)Oval

42,040 (16.2)Capsule

1150 (0.4)Hexagon (6-sided)

738 (0.3)Triangle

280 (0.1)Trapezoid

120 (0)Pentagon (5-sided)

Experimental Testbed and Stimuli
In the experiment, participants performed a pill verification task
with the help of an imperfect AI aid that recommends whether
to accept or reject a filled medication. The participant’s task
was to verify whether the filled medication matched the
reference image. If the reference image and filled medication
did not match, the correct action was to click “reject.” If the
reference image and filled medication matched, the correct
action was to click “accept.”

The user interface was designed following pharmacists’
feedback from a focus group study conducted by the research
team [50]. The interface displayed an image of a filled
medication, a reference image, prescription information, and
AI aids. There were 2 types of AI aids powered by the same AI
model: one aid augmented with an uncertainty plot indicating
the degree of certainty (or uncertainty) of the AI
recommendation, and the other aid without this feature. Both
AI aids recommend the action the pharmacist should take, using

4 checkboxes. A recommendation to accept was indicated when
all four checkboxes turned green (Figure 2); otherwise, the
recommendation was to reject. For the AI aid with the
uncertainty plot, an additional histogram was integrated (Figure
3). The histogram displayed the distribution of the 50
probabilities for the predicted NDC, generated by the 50
predictions. The purpose of the histogram was to provide a
visual representation of the certainty or uncertainty level
associated with the AI’s NDC prediction.

With the help of an AI aid, participants performed a block of
100 pill verification trials. The experimental stimuli for the 100
trials, including the reference NDC and the filled medication,
were carefully selected from the dataset of 432,974 images. The
selection process ensured a broad representation of colors and
shapes (Table 3), while blurry images were excluded to maintain
clarity. To minimize learning effects, each reference NDC was
intentionally shown no more than twice throughout the
experiment.
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Figure 2. Interface for the AI aid without the uncertainty plot. Checkboxes indicate AI’s recommendation. When all 4 checkboxes are green, the AI
advises to accept; otherwise, it advises to reject. AI: artificial intelligence; NDC: National Drug Code.

Figure 3. Interface for the AI aid with the uncertainty plot. In addition to Figure 2, the histogram shows the distribution of the 50 predicted probabilities
associated with the predicted NDC. AI: artificial intelligence; NDC: National Drug Code.
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Table 3. Percentage of medication characteristics featured in artificial intelligence–aided trials (N=100) for reference images and filled images.

Filled, n (%)Reference, n (%)Characteristics

Color

37 (37)35 (35)White

12 (12)12 (12)Yellow

8 (8)8 (8)Pink

8 (8)8 (8)Orange

3 (3)3 (3)Multicolor

6 (6)6 (6)Green

2 (2)3 (3)Red

10 (10)10 (10)Blue

10 (10)10 (10)Brown

3 (3)4 (4)Purple

1 (1)1 (1)Turquoise

0 (0)1 (1)Gray

Shape

51 (51)54 (54)Round

28 (28)24 (24)Oval

19 (19)19 (19)Capsule

1 (1)2 (2)Hexagon (6-sided)

0 (0)0 (0)Triangle

1 (1)1 (1)Trapezoid

0 (0)0 (0)Pentagon (5-sided)

Furthermore, the AI aid was not perfect for the 100 trials, that
is, it occasionally offered incorrect recommendations. Based
on SDT, we mapped out the relationship between the AI’s
recommendation and the true state of the world [53]. In the
context of this experiment, a signal in the world was an
incorrectly filled medication. The extent to which the AI
recommended rejecting an incorrectly filled medication reflects

its ability to detect the signal. The combination of the state of
the world and the AI’s recommendation resulted in four potential
outcomes: (1) the AI rejects the incorrect drug (hit), (2) the AI
approves the incorrect drug (miss), (3) the AI rejects the correct
drug (FAs), and (4) the AI approves the correct drug (CRs), as
shown in Figure 4.

Figure 4. Four potential AI performance patterns according to signal detection theory. AI: artificial intelligence.
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Benchmarking prior literature [54], the base rate was set to be
24%, that is, 24% of the trials contained wrongly filled
medication. The AI accuracy was set as 82% to ensure that the
AI would be perceived as useful while providing sufficient
misses and false alarms [55]. By combining the filled image
accuracy and AI accuracy, there were 60 cases of the AI
approving the correct drug, 22 cases of the AI rejecting the
incorrect drug, 2 cases of the AI approving the incorrect drug,
and 16 cases of the AI rejecting the correct drug.

After each trial, participants received performance feedback
indicating the correctness of their decision to accept or reject,
as well as whether the prescription bottle was correctly or
incorrectly filled (ie, “Your decision was correct. The
medication was correctly filled”). Following this step,
participants reported their trust in the recognition AI on a visual
analog scale, with the leftmost point labeled “Not at all trust”
and the rightmost point labeled “Completely trust” (Figure 5)
[44,56,57].

Figure 5. Participants reported their trust in the recognition AI on a visual analog scale. AI: artificial intelligence.

Experimental Design
The experiment used a mixed subjects design. The
between-subjects factor was the type of AI aid, distinguished
by the presence or absence of an uncertainty plot. The
within-subjects factor was the four potential outcomes: (1) the
AI rejects the incorrect drug, (2) the AI rejects the correct drug,
(3) the AI approves the incorrect drug, and (4) the AI approves
the correct drug (Figure 4).

Half of the participants used the AI aid without the uncertainty
plot, and the other half used the AI aid with the uncertainty plot.
Each participant completed 2 blocks of 100 trials each. One
block involved using the AI aid (either with or without the
uncertainty plot), and the other block required participants to
perform the task manually. The order of the 2 blocks was
counterbalanced. Additionally, benchmarking prior literature
[45], the trial sequence was fixed for the 100 trials in each block.

As this study is focused on the pharmacists’ trust in AI, data
from the manual task block were excluded from the analysis,
concentrating the study’s findings on interactions involving the
AI aid.

Measures

Trust propensity
Before the experiment, we measured participants’ trust
propensity using the 6-item survey used by Merritt et al [58].
Trust propensity is “a stable, trait-like tendency to trust or not
trust others” [59], and the propensity to trust machines reflects
a person’s tendency to trust machines in general rather than in
a particular machine.

End Trust
End trust, Trust(100), is the participant’s final trust rating after
interacting with the AI help scenario.

Average Trust
Average trust denotes the mean of moment-to-moment trust
ratings collected throughout the experiment.

Trust Change
After each trial i, participants reported their Trust(i) in the AI.
We calculated a trust change as follows.

Trust change (i) = Trust(i) – Trust(i – 1), where i=2,
3, ..., 100.

Since the moment-to-moment trust was reported after each trial,
99 trust changes were obtained from each participant.

Experimental Procedure
The experiment was conducted remotely with interested
participants who met the inclusion criteria. Each interested
individual was phone screened to determine their eligibility.
Before each experiment, participants had a brief web-based
meeting with a member of the study team to ensure that the
physical environment, including lighting conditions, was suitable
for the experiment. Subsequently, the pharmacists were directed
to Labvanced’s website on their computer and presented with
a 15-minute video tutorial that explained how to perform a
simulated medication verification task using the testbed
interface. Pharmacists were informed that the objective of the
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task was to determine whether an image of a filled medication
bottle matched a known reference image. The tutorial also
explained the 2 AI aids.

Before engaging in the verification task, participants were
directed to complete a demographics survey and a trust
propensity survey [58]. Additionally, they went through a set
of calibration procedures for the eye-tracking software.
Participants then completed a block of 100 verification trials
using an AI aid—either with or without the uncertainty
plot—and another block of 100 verification trials manually,
conducted in a counterbalanced order. Upon completion of the
200 trials, participants filled out a postexperimental survey and
answered nonmandatory free-response feedback questions. All
participants finished each block within the time limit of 60
minutes.

After completing all the tasks and surveys described earlier,
participants were invited to a 30-minute debriefing session with
one of the study team members. Study team members described
6 concepts of automation evaluation: observability,
predictability, directing attention, exploring solution space,
adaptability, and calibrated trust [60], and provided an example
scenario for each concept. After each description and example,
the participants were asked to provide their thoughts on how
the concept relates to our system.

Statistical Analysis
Participants’ trust propensity, end trust, and trust change when
using both types of AI aids were analyzed. First, we conducted

a descriptive analysis of the participants’ trust propensity. Then,
to test our directional hypothesis that AI aids with uncertainty
will result in higher end and average trust, we conducted a
1-tailed t test. Finally, we analyzed how trust increased and
decreased after participants experienced each of the 4 AI
performance patterns using mixed-linear models with random
intercept. Regression 2-tailed t tests were conducted to compare
the means between the 2 AI aids for each AI performance
pattern. The Kenward-Roger method was used to estimate
degrees of freedom. Mixed model (generalized linear models)
tests were conducted using the R (version 4.2.2; R Foundation
for Statistical Computing) lme4 package [61]. All statistical
significance was determined at the ɑ=.05 level and analyses
were carried out using R statistical software [62].

Results

Trust Propensity
Participants had an average trust propensity score of 72 (SD
18.08) out of 100, indicating the participants generally had a
positive attitude toward trusting automated technologies. There
was no significant difference between the 2 AI aids (t28=–0.854;
P=.20; Cohen d=.312).

End Trust Toward AI Aid
The 1-tailed t test indicated that participants trusted the AI aid
with the uncertainty plot significantly more than the AI aid
without the plot at the end of the experiment (t28=–1.854; P=.04;
Cohen d=–.677; Figure 6).

Figure 6. Mean end trust by AI aid help type (with or without the uncertainty plot). The error bars represent a 95% CI. AI: artificial intelligence.

Average Trust Toward AI Aid
Participants showed a slightly higher average trust in the AI aid
in the with-uncertainty condition (mean 76.92, SD 13.42) than

in the without-uncertainty condition (mean 70.29, SD 20.88;
Figure 7). However, the difference did not reach statistical
significance (t28=–1.036; P=.16; Cohen d=–.378).

JMIR Hum Factors 2025 | vol. 12 | e60273 | p. 9https://humanfactors.jmir.org/2025/1/e60273
(page number not for citation purposes)

Kim et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 7. Mean average trust by AI aid help type (with or without the uncertainty plot). The error bars represent a 95% CI. AI: artificial intelligence.

Trust Change
Figure 8 shows the trust change after participants experienced
the 4 AI performance patterns. When the AI approved the correct
drug, there was a significantly greater trust increment when
participants used the AI aid with the uncertainty plot compared
to the one without (t78.98=3.93; P<.001; Cohen d=.214); When
the AI approved the incorrect drug, there was a significantly
greater trust decrement using the AI aid with the uncertainty
plot (t2939.72=–4.78; P<.001; Cohen d=.712). Interestingly, when
the AI rejected the incorrect drug, we observed a decrement of
trust for participants using the AI aid with the uncertainty plot
(t509.77=–3.96; P<.001; Cohen d=.312). When the AI rejected
the correct drug, both AI help types showed a decrease in trust
and there was no statistical difference between them
(t856.57=–0.68; P=.49; Cohen d=.045). Overall, participants using
the AI aid with the uncertainty plot displayed a large magnitude
of trust adjustment. In addition, we observed a significant
“negativity bias” in that the magnitude of trust change when
the AI made an error (ie, the AI approves the incorrect drug or
the AI rejects the correct drug) was significantly larger than the
magnitude of trust adjustment when the AI provided correct
recommendations (generalized linear model test; z=–11.30;
P<.001).

To examine variation in pharmacists’ trust behavior across
different AI performance patterns categorized by SDT, we
initially combined the data from both the with and without
uncertainty help scenarios. Trust decreased significantly more
when the AI approved the incorrect drug compared to when the
AI rejected the correct drug (t509=–4.687; P<.001; Cohen
d=.475). This trend was observed in the with-uncertainty AI
help scenario (t254=–4.91; P<.001; Cohen d=.758). However,
in the without-uncertainty AI help scenario, although there was
a greater trust decrease in trust when the AI approved the
incorrect drug than when the AI rejected the correct drug, the
difference was not statistically significant (t254=–1.14; P=.255;
Cohen d=.014).

As we measured participants’ trust toward AI continuously, we
calculated the autocorrelation between the trust ratings.
Autocorrelation measures the relationship between a variable’s
current value and its past values in a time series. Figure 9 shows
the mean autocorrelation as a function of time separation
between the ratings. For both AI aids, the correlation decreased
as the time separation increased. The AI aid with the uncertainty
plot had a lower mean autocorrelation compared to the aid
without the uncertainty plot (Figure 9).
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Figure 8. Trust change for different AI performance patterns. Red shades represent negative trust change, and blue shades represent positive trust
change.

Figure 9. Autocorrelation of trust as a function of time separation. The blue solid line represents AI aid with the uncertainty plot, and the red dashed
line represents the AI aid without the uncertainty plot. The error bars represent 2 SEs. AI: artificial intelligence.

Discussion

Principal Findings
This study aimed to investigate pharmacists’ trust in automated
pill verification technology and how the presentation of AI
uncertainty information would influence them. Overall, the
findings revealed that pharmacists have a favorable disposition
toward trusting automation, and including the AI’s uncertainty

information increases pharmacists’ trust in the AI
recommendation (Figure 6).

Comparison With Prior Work
The propensity to trust automation refers to an individual’s
general inclination to trust automated or autonomous systems,
shaped by their past experiences and future expectations [58,59].
Research has shown that levels of trust propensity vary among
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individuals. For example, an early study by Merritt et al [58],
which included 69 college students (average age of 25 years),
found an average trust propensity of 3.56 (SD 0.6) on a 7-point
Likert scale [59]. More recently, Montag et al [63] surveyed
289 participants aged between 18 and 70 years and reported
their propensity to trust automation to be 4.98 (SD 1.06) after
converting to a 7-point Likert scale. Similarly, Miller et al [64]
reported a trust propensity score of 4.97 (SD 1.21) from a
smaller cohort of 28 participants aged between 18 to 60 years.
Another investigation by Yang et al [65] with 75 adults (mean
age 23.0) split into 3 groups reported trust propensity scores of
72.6 (SD 14.8), 69.4 (SD 10.4), and 69.4 (SD 14.4), equivalent
to average scores of 5.08 (SD 1.89), 4.86 (SD 1.62) and 4.86
(SD 1.86) on a 7-point Likert scale.

In line with these findings [63-66], our study revealed that
pharmacists generally have a favorable disposition toward
trusting automation, with an average rating of 72 (SD 18.08)
on a 100-point scale, or 5.03 (SD 2.09) on a 7-point Likert scale.
This positive attitude may be attributed to the frequent use of
automated technologies, such as barcode scanners and pill
counters in their daily work [6,7]. Additionally, as expected,
no significant difference was observed between the groups using
different AI aids because the participants were randomly
assigned to use either of the AI aids.

Examining pharmacists’ end trust, our findings reveal that the
AI aid with the uncertainty plot significantly enhanced the end
trust scores. We attribute this enhancement to the increased
transparency achieved through the presentation of a histogram
showing the distribution of 50 predicted probabilities. While
AI advancements promise to improve human performance, a

prevailing issue is the perception of AI as a “black box.” This
lack of transparency contributes to a lack of trust in AI and can
undermine team performance [66-68]. The higher end trust
observed in participants using the AI aid with the uncertainty
plot indicates that making the AI more transparent by revealing
its decision-making process can foster a higher level of trust in
automation. Participants 14 and 24 captured this sentiment well
stating: “As soon as the uncertainty plot became red and yellow,
I slowed down, which could be helpful because sometimes
slowing down when there is uncertainty, just knowing there’s
uncertainty, is enough” (P14) and “if the uncertainty plot was
all green bar and AI thought it was doing a 100% accurate job
then it was easier to make my decision” (P24).

Regarding the dynamics of trust, that is, moment-to-moment
trust change, when AI approved the correctly filled bottle, we
noted trust increments for both AI aids. Furthermore, the
inclusion of uncertainty information led to a larger increment
in trust compared to when such information was absent. When
the AI mistakenly approved the incorrect drug, we observed a
significant trust decrement for both AI aids, potentially attributed
to the adverse outcome associated with the wrong medication.
Furthermore, the trust decrement was significantly larger when
the uncertainty information was shown. This pronounced trust
decrement could have resulted directly from the distribution of
the histogram: participants were shown a histogram indicating
a high level of certainty (Figure 10A). Therefore, participants
may have perceived the error made by the AI aid as a
“confident” error and therefore reduced their trust even more.
Studies examining likelihood alarms reported that highly likely
alarms (ie, “confident” alarms) engender a greater decline in
momentary trust upon automation failures [57,69].

Figure 10. Uncertainty plots with (A) narrower and (B) wider IQRs. IQR is a measure of statistical dispersion, or how spread out the data points are.

Our study also offers additional validation of prior findings
regarding the SDT modeling of trust [47,48]. When the AI
mistakenly approved the incorrect drug (miss), a greater trust
decrease appeared compared to when the AI rejected the
correctly filled bottle (FA). However, the difference was
statistically significant only in the with-uncertainty AI help
type. This finding may provide further evidence that “confident”
AI errors lead to a greater trust decrement [57,69].

Intriguingly, when the AI rejected an incorrectly filled bottle,
the absence of uncertainty information resulted in an increase

in trust, whereas the presence of such information led to a
decrease in trust. Such contrasting results could have stemmed
from the uncertainty plots influencing the participants’
decision-making process. When the AI approved the correct
drug, all uncertainty plots presented to participants showed a
consistent solid green bar (Figure 10A). However, when the AI
rejected the incorrect drug, the IQR of the uncertainty plot was
broader, indicating the lack of certainty (Figure 11). A total of
16 (73%) out of 22 uncertainty plots displayed a wider spread
with mixed color bars (Figure 10B). This ambiguity might
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unintentionally cause the human participants to doubt the
capability of the AI aid with the uncertainty plot, resulting in a
decrease in their trust, as evidenced by P18’s statement: “When
the checkboxes were not all green and the histogram had a bunch

of colors (variability), I was even less trusting of the AI tool.”
This perspective is also supported by P25, who noted: “When
the uncertainty plot had some red, it made me double check and
decreased my confidence for sure.”

Figure 11. Mean IQR by outcome pattern. The error bars represent a 95% CI. AI: artificial intelligence.

Finally, when AI rejected the correctly filled bottle, trust
decrements occurred, with no significant differences between
the 2 AI aids. If this circumstance happened in the real world,
the pharmacists would reinspect the filled prescription. It will
likely lead to an increased workload, fatigue, and stress, which
could potentially lead to a lower quality of work and a higher
frequency of errors [70,71]. However, P21 offered a contrasting
viewpoint that more flagging would be better than AI approving
the incorrect, highlighting: “I didn’t lose as much trust when
AI rejected the correct drug. I feel like AI should be there as a
cautionary tool.”

The observed trends in the moment-to-moment dynamics of
trust indicate a greater degree of trust adjustment when
participants were assisted by the AI with the uncertainty plot.
This observation is further confirmed by the autocorrelation
analysis. Specifically, the trust autocorrelation plot (Figure 9)
reveals a lower autocorrelation between trust ratings when the
uncertainty information was presented. This suggests that current
trust levels were less influenced by past trust levels, implying
more significant changes in trust from moment to moment.
Pharmacists relied less on previous trials and more on the
information presented in the present trial, highlighting the
advantages of a more transparent display.

In addition, for both AI aids, participants displayed a larger trust
decrement due to incorrect automation predictions. Even though
these observations may seem alarming initially, they align with
the prior literature addressing negativity bias. The study suggests
that failure in automation typically has a more significant
negative impact on trust than a positive impact from successful
automation [56,65].

Limitations and Future Directions
We acknowledge several limitations of this study and propose
directions for future research. First, as a pioneering investigation
in this domain, we did not strictly control the interquartile range
of the uncertainty plot (Figure 11). Future investigation should
systematically examine the effects of presenting different
distributions within the uncertainty plot on pharmacists’ trust.
Exploring similar variations in the IQR among different outcome
patterns could provide a deeper understanding of how outcome
patterns could impact trust while avoiding potential confounding
factors.

Second, the uncertainty plot used in this study displayed the
distribution of only 1 (2%) out of 50 probabilities for the
predicted NDC. Future research should consider incorporating
additional contextual information to enhance the interpretability
of these distributions. A notable challenge identified was that
users unfamiliar with statistical representation found the
uncertainty plot difficult to understand. P11 suggested
simplifying the uncertainty presentation because “it would be
a little bit too much for some people not as comfortable with
statistics or technology.” Nonetheless, there is potential for
pharmacists to become more comfortable with these plots with
prolonged use and training, as evidenced by P30’s remark: “I
started skeptical because it’s something I’m not familiar with,
but as I got more examples of it, my trust built up quickly.”
Consequently, researchers should continue to develop alternative
visualization techniques that provide a more comprehensive
and intuitive representation of the AI’s uncertainty, while
maintaining a low complexity to accommodate users with
varying degrees of statistical proficiency.
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Third, this exploratory study was limited by a small sample
size, which may have impacted the statistical power of the
analyses on trust propensity, end trust, and average trust. This
limitation likely contributed to the lack of significance observed
in some results. However, despite being underpowered, our
analysis still revealed a significant difference in end trust,
indicating a large effect size. Regarding trust change, to maintain
the AI’s perceived usefulness while still providing enough
examples of both misses and FAs, we incorporated only 2 trials
of the AI approving the incorrect drug (miss) and 16 trials of
the AI rejecting the correct drug (FA), setting the accuracy at
82%. The statistical power to detect significant differences may
have been compromised by the small sample sizes. Future
research should aim to include larger participant pools to
enhance the generalizability and robustness of the findings.

Finally, this study only focused on pharmacists’ trust and trust
change and did not include the analysis of accuracy and reaction
time. Even though focusing on trust alone is an accepted practice
[53], a more comprehensive analysis linking performance with
trust would likely reveal the relationship between performance
and trust calibration.

Conclusions
Dispensing errors are significant contributors to adverse drug
events, which lead to considerable health care expenses and

harm to patients. Despite progress made in developing
automated technologies to aid pill verification, pharmacists’
trust in these systems has not been thoroughly investigated. Our
research represents an initial exploration into pharmacists’ trust
in automated pill verification technology, marking a significant
step in understanding the integration of such systems into health
care settings.

Our findings reveal that pharmacists have a favorable disposition
toward trusting automation, which can likely be attributed to
their frequent use of automated technologies in their daily work.
Moreover, providing uncertainty information about the AI’s
recommendation significantly boosts pharmacists’ trust in the
AI aid, highlighting the importance of transparency in AI
development. The dynamics of trust vary depending on the AI’s
performance. Pharmacists using the AI aid with the uncertainty
plot had a significantly larger trust increment when the AI
approved the correct drug and a significantly larger trust
decrement when the AI approved the incorrect drug.
Intriguingly, the absence of the uncertainty plot led to an
increase in trust when the AI correctly rejected an incorrect
drug, whereas the presence of the plot resulted in a decrease in
trust under the same circumstances. In addition, a pronounced
“negativity bias” was observed, where the degree of trust
reduction when the AI made an error exceeded the trust gain
when the AI made a correct decision.
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