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Abstract
Background: The integration of collaborative robots (cobots) in industrial settings has the potential to enhance worker safety
and efficiency by improving postural control and reducing biomechanical risk. Understanding the specific impacts of varying
levels of human-robot collaboration on these factors is crucial for optimizing cobot use.
Objective: This study aims to investigate the biomechanical effects of different levels of human-robot collaboration on
postural stability and control during simulated working tasks.
Methods: A total of 14 participants performed simulated cashier working activities under 4 different collaboration modalities,
with increasing levels of cobot assistance: full (Fu), half robot touch (HRT), half robot (HRb), and full robot (FRb). Center
of pressure trajectories were extracted from 2 force plates’ data to calculate 4 posturography parameters—mean distance
(MDIST), mean velocity (MVELO), 95% confidence ellipse area (AREA-CE), and sway area (AREA-SW)—which were
analyzed to assess the impact of cobot intervention on postural control.
Results: Nonparametric tests showed significance in the effect of the collaboration modalities on the 4 analyzed parameters.
Post hoc tests revealed that FRb modality led to the greatest enhancement in postural stability, with a reduction in MDIST (4.2,
SD 1.3 cm in Fu vs 1.6, SD 0.5 cm in FRb) and MVELO (16.3, SD 5.2 cm/s in Fu vs 7.9, SD 1.1 cm/s in FRb). AREA-CE and
AREA-SW also decreased significantly with higher levels of cobot assistance (AREA-CE: 134, SD 91 cm² in Fu vs 22, SD 12
cm² in FRb; AREA-SW: 16.2, SD 8.4 cm²/s in Fu vs 4.0, SD 1.6 cm²/s in FRb). Complete assistance of the cobot significantly
reduced interindividual variability of all center of pressure parameters. In FRb modality, as compared with all other conditions,
removing the weight of the object during loading or unloading phases caused a significant decrease in all parameter values.
Conclusions: Increased cobot assistance significantly enhances postural stability and reduces biomechanical load on workers
during simulated tasks. Full assistance from cobots, in particular, minimizes postural displacements, indicating more consistent
postural control improvements across individuals. However, high levels of cobot intervention also reduced the natural variation
in how people balanced themselves. This could potentially lead to discomfort in the long run. Midlevel cobot assistance
modalities can thus be considered as a good compromise in reducing biomechanical risks associated with postural stability at
the same time granting a satisfactory level of user control.
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Introduction
Industrial manufacturing is transitioning from well-estab-
lished production procedures toward more flexible and
intelligent manufacturing systems (Industry 4.0, as initially
described by Kagermann et al [1]). This evolution aims
to develop innovative, sustainable solutions that create new
business models, improve working conditions, increase plant
productivity, and enhance product quality [2]. Robotics plays
a crucial role in this context, with industrial robots being
widely adopted due to their ability to relieve humans from
repetitive, unhealthy, or dangerous tasks [3]. The field of
robotics has evolved to not only allow humans to share the
same workspace with robots but also use them as assistants,
thereby enhancing human-robot collaboration (HRC) [4].

Collaborative robots (cobots) are at the forefront of
this revolution, offering increased productivity, flexibility,
versatility, and safety compared with traditional industrial
robots. Cobots are designed to work alongside humans,
sharing the same workspace without the need for safety
cages and providing greater mobility and flexibility [5]. The
integration of cobots in industrial environments has been
shown to significantly enhance operational efficiency [6]
and worker satisfaction by enabling safer and more ergo-
nomic working conditions [7,8]. However, the integration
of cobots impacts various human factors, which include
psychological aspects [9], emotions [10], and biomechanical
effects [11]. Consequently, it is important to consider both
cognitive ergonomics and biomechanical safety to optimize
the overall effectiveness and well-being of human workers
[12]. For instance, Gualtieri et al [13] have investigated the
cognitive elements involved in human interaction with cobots,
revealing significant insights into how mental workload and
task complexity can affect worker performance and satisfac-
tion [14]. Similarly, improper collaboration with cobots can
expose workers to biomechanical risks, even though these
robots are intended to alleviate heavy and tedious tasks.
Previous research studies [15,16] emphasized the importance
of ergonomic considerations in HRC to prevent musculoske-
letal disorders (MSDs) among workers.

Thus, the right choice of cobot collaboration modality can
reduce biomechanical overload on workers, ensuring their
safety.

Recent advancements in sensor technology and data
analytics have enabled detailed assessments of human
biomechanics during HRC [17,18]. Studies have shown that
real-time monitoring and analysis of physiological data can
provide valuable insights into the physical strain experienced
by workers and help in optimizing collaborative processes
[19]. For example, the use of wearable sensors and motion
capture systems could effectively measure and analyze the

biomechanical load on workers during different collabora-
tive tasks with robots [20]. Other recent studies investiga-
ted the effects of different HRC modalities on physiological
human parameters such as trunk oscillations [21] and muscle
coactivation [22,23]. Such studies can also be profitably taken
into consideration for the optimization of workplace design
and task allocation.

When work tasks are performed in quasi-static conditions,
direct measures of posture could reveal insights into the
stability and balance of workers and can thus be used to
improve ergonomics during HRC, as they can help iden-
tify postural adjustments and biomechanical loads, providing
a more comprehensive understanding of HRC ergonomic
impact [24].

Following this principle, this study will evaluate and
analyze posturography data to assess the biomechanical risks
in HRC working contexts where cobots are used in differ-
ent modalities. Through this evaluation, the study seeks to
determine whether cobot assistance can effectively reduce
biomechanical risks: by examining how different collabora-
tive modalities influence workers’ stability and balance, thus
providing insights into the effects of cobot assistance on
postural control, as this latter one indirectly reflects safety,
efficiency, and ergonomic well-being of human workers in
collaborative environments.

Methods
Experimental Setup

Overview
The setup was designed to compare a simulated work activity
performed with and without cobot assistance. A specific
workbench was created by positioning the cobot on one of the
longer sides of a 2 × 1 m table, with the operator stand-
ing upright on the opposite side (Figure 1). The operator’s
standing position was fixed relative to the edge of the table,
defined by the position of his or her feet and the projection
onto the ground of the long side of the table. A starting
station (ie, the initial position to the right of the operator)
and an arrival station (ie, the final position to the left) were
defined, each 1m apart from the other and 30 cm away from
the operator in the direction of the cobot. A scanning area
was defined in the center of the table in front of the operator.
This workbench arrangement allowed the operator to perform
all the activities (or part of them) independently, while the
cobot could collaborate on some or none of the tasks without
interfering with the operator’s movements. This configuration
was defined to minimize possible hindering of the operator’s
movements.
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Figure 1. Experimental setup dimensioning for the simulation of load-moving activities on a workbench. CoP: center of pressure.

The activities involved the handling and relocating of
rectangular packages, each measuring 14 × 12 × 5 cm and
weighing 1 kg, bearing a QR code on one side.

The tests were conducted with a group of 14 male
volunteers aged between 25 and 48 years (weight: 79, SD
7 kg; height: 180, SD 5 cm). All volunteers were healthy
and had no evident or declared mobility issues. Moreover,
given the design of the setup, only right-handed subjects have
been involved in the tests. Participants were instructed to (1)
grasp the packages from the starting station, (2) identify the
QR code and scan it (ie, facing the QR code to the scan
area) in the central area, and then (3) place the package
in the arrival station. Different levels of collaboration were
implemented by removing the first part of these activities (ie,
grasping the package and bringing it to the center of the table)
when in partial assistance, and removing also the last part (ie,
bringing the package to the arrival station) when in full cobot
assistance. Each participant was asked to perform the task as
naturally as possible. This task was designed to simulate the
work activity of a cashier in a supermarket, a highly relevant
example in terms of strenuous activity [25], where an increase
in the level of cobot assistance is hypothesized to reduce the
associated biomechanical risk.

In the test, each participant performed consecutive
repetitions of the same task, for a 5-minute duration, with
different levels of cobot assistance.

The frequency of processing (packages per minute [PPM])
to be handled was not defined a priori, and participants

were allowed to choose their own pace in performing all
the activities. When collaborating with the cobot, the PPM
frequency was however influenced by the cobot’s package
handling activity, as described below.

Each participant was asked to perform the described
activity under 4 different collaboration modalities, performed
in random order, with a 5-minute break between each test.

Full (Fu)
In this baseline scenario, the operator performs the tasks
independently, without cobot collaboration. The operator
picks up the package from the starting station with the
right hand, examines it with both hands to locate the QR
code, brings it close to the scanner simulation area, and
finally places the package in the arrival station with the left
hand. The processing rate was freely self-selected by each
participant.

Half Robot Touch (HRT)
In this condition, the cobot task is to pick up the package
from the starting station and wait for the operator to extend
their right arm toward the same area, and to touch it to start.
When touched, the cobot moves bringing the package in front
of the operator who grabs and examines it with both hands
to locate the QR code. The operator then brings it close to
the scanner simulation area and finally places the package in
the arrival station with the left hand. The task is kinematically
like the “Full” case, but there is no lifting of the package from
the starting station toward the scanning area. Moreover, the
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operator drives the activation of the cobot with a touch, and
therefore the number of PPM is decided by everyone, taking
into account the cobot speed.
Half Robot (HRb)
In this modality, the cobot’s task is to pick up the package
from the starting station and autonomously transport it in
front of the operator, who grabs and examines it with both
hands to locate the QR code. The operator then brings it close
to the scanner simulation area and finally places the package
in the arrival station with the left hand. The operator is not
required to initially reach the right arm toward the starting
station to ask the cobot for help, so the task is different in
terms of kinematic features compared with the previous cases.
Packages are moved continuously by the cobot while the
operator is performing the required tasks, therefore, the cobot
determines the number of PPM.

Full Robot (FRb)
In this condition, the cobot’s task is to pick up the pack-
age from the starting station and autonomously transport it
continuously in front of the operator, who grabs and examines
it with both hands to locate the QR code. The operator then
brings it close to the scanner simulation area and finally
places the package in a closer area with respect to the
arrival station (Figure 1). Meanwhile, the cobot picks up the
package left by the operator and takes it to the arrival station.
The cobot intervenes significantly, fully collaborating in the
activity. However, the time taken by the cobot to move the
packages always exceeds the time that the operator needs to
perform the activity. Therefore, the operator must wait for
the cobot, and the motor activity is discontinuous, with the
number of PPM defined by the cobot kinematics.
Ethical Considerations
The experimental protocol was approved by the Commis-
sione Etica dell’Università degli Studi Roma Tre (BRIC2019-
BRISK approval r.01-10/06/2021). Informed consent was
obtained from all participants prior to their inclusion in the
study, and they were informed of their right to withdraw
at any time without consequences. All data collected were
anonymized to protect participants' privacy and confidential-
ity. No personally identifiable information was retained, and
strict security measures were implemented to safeguard the
data. Participants did not receive any financial or material
compensation for their involvement in this study.
Data Acquisition and Processing
To assess the dynamic interaction of the operator with the
ground, two 6-component force platforms (BTS P-6000) were
positioned under the participants’ feet. These platforms allow
for measuring the ground reaction of each participant’s lower
limbs (force and moment components), from which the center
of pressure (CoP) position of each foot is extracted during
the execution of performed tasks. Data were acquired from
force platforms using a sampling frequency of 500Hz (fixed
by the HW system). An optoelectronic system (SMART DX
6000, 8 infrared cameras, 2 Mpixel@300 Hz) was employed
to segment and identify each task repetition, and each

phase of the repetition. Data from the optoelectronic system
were acquired using a sampling frequency of 250Hz. Force
platforms data were undersampled at 250 Hz to synchronize
those with the optoelectronic system ones.
Dynamic Parameters Extraction
Trajectories of the CoP for each of the lower limbs (ie,
CoP-right and CoP-left) during the execution of each task
were extracted from the force plates data [26]. The total CoP
is obtained as the weighted average between CoP-right and
CoP-left and its displacement is defined by both the medial-
lateral and the anterior-posterior coordinates with respect to a
reference system centered between the 2 force plates (Figure
1).

Four CoP-derived parameters were calculated to evaluate
the postural stability of the operator and quantify alterations
in balance: for each of the collaboration modalities, the mean
distance (MDIST), mean velocity (MVELO), 95% confidence
ellipse area (AREA-CE), and sway area (AREA-SW) were
calculated, according to the definitions reported in [27], for
each cycle of the task repetition. For each parameter, mean
values (as a measure of central tendency) and SD across
repetitions (as a measure of intraindividual variability) were
also calculated and underwent inferential statistics.

Cycles were identified using data extracted from motion
capture data, which were synchronized with force plate data:
in particular, the time location of the maximum excursion to
the left in the medio-lateral direction of the marker placed
on the right wrist was used to segment each cycle, as it
corresponds to the instant when each repetition finishes.
Statistical Analysis
For each CoP-derived parameter thus obtained, the normal-
ity of the data, using the Shapiro-Wilk test, was assessed.
When all distributions were normal, the homogeneity of
the variances was checked with the Leneve test. If these
conditions were not satisfied, the Kruskal-Wallis nonparamet-
ric test was applied to examine the effect of the collaboration
modality. When significant, a post hoc test with a Bonfer-
roni correction was conducted to investigate the differences
among the 4 examined collaboration modalities. The α level
was set to .05 and .01 (denoted by * and **, respectively).

Results
Rate of Package Processing
The average rate of package processing chosen by the
operators in the absence of cobot assistance (Fu) was 15 (IQR
14-16) PPM. The different cobot collaboration modalities
yielded median rates of 8 (IQR 7-8.5) for PPM for half robot
touch (HRT), 12 (IQR 11.5-13) PPM for half robot (HRb),
and 4 (IQR 3.9-4.1) PPM for full robot (FRb).
CoP Trajectories
In the following, the different trajectories of the CoP, for all
14 participants and for the 4 different collaboration modalities
(ie, full [Fu], HRB, HRb, and FRb) are shown, with Xcop
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and Ycop denoting respectively the medium-lateral and the
antero-posterior coordinate.

Considering the Fu modality (Figure 2), observed CoP
paths can be classified into 2 main groups: participants
(1,2,3,6,7,8,11,13,14) displayed a compact size of the CoP
path, spread in both anterior-posterior (AP) and medial-lateral

(ML) directions, while participants (4,5,9,10,12) drew wider
areas, with a remarkable trajectory from the central backward
position to the right forward position. However, all the CoP
paths present quite diverse behavior, with no visible common
aspects. Negative values for Ycop denote backward displace-
ments.

Figure 2. Center of pressure (cop) trajectories for each participant during the full collaboration modality.

Considering the HRT collaboration modality (Figure 3), CoP
path can be classified into 2 main groups also in this case:
participants (1,2,7,8,13,14) maintained a compact size of
the CoP path, more spread along the AP direction, while
participants (3,4,5,6,9,10,11,12) drew a wider area of the CoP

path. In this case, all CoP trajectories denoted a bias from
the central backward position to the left forward position.
Displayed CoP paths still exhibit rather diverse behavior, but
with more commonalities as compared with Fu modality.

Figure 3. Center of pressure (cop) trajectories for each participant during the half robot touch collaboration modality.

For the HRb collaboration modality (Figure 4), also in this
case CoP path can be classified into 2 main groups: for
participants (1,2,7,13,14) CoP path was maintained compact,
differently from participants (3,4,5,6,8,9,10,11,12), especially
considering the AP coordinate. Common behavior of CoP

excursion across subjects was instead present along the ML
coordinate, while the CoP bias from the central backward
position to the left forward position observed in the HRT case
is less evident.

JMIR HUMAN FACTORS Bibbo et al

https://humanfactors.jmir.org/2025/1/e64892 JMIR Hum Factors 2025 | vol. 12 | e64892 | p. 5
(page number not for citation purposes)

https://humanfactors.jmir.org/2025/1/e64892


Figure 4. Center of pressure (cop) trajectories for each participant under the half robot collaboration modality.

In the FRb collaboration modality (Figure 5), commonalities
of CoP behavior are more relevant. While some participants
still display lower excursions along the AP direction, the

characteristics of CoP trajectories are mostly similar, with no
bias both in the right and left forward positions. The amount
of excursion in the ML direction is similar across participants.

Figure 5. Center of pressure (cop) trajectories for each participant during the full robot collaboration modality.

Normality Tests
The Shapiro-Wilk test indicated that some conditions of the
parameters did not follow a normal distribution. For the
MDIST values, a P value <.05, indicating rejection of the null
hypothesis of normal distribution, was observed for the Fu
condition (P=.048). In contrast, a normal distribution (P value
>.05) was found for all the other conditions (HRT: P=.44;
HRb: P=.57; FRb: P=.60).

Similar results were obtained for both the AREA-CE
and AREA-SW parameters. The Fu condition showed a
nonnormal distribution (P=.02 for AREA-CE and P=.04
for AREA-SW), while all other conditions were normally
distributed (for AREA-CE: HRT, P=.18; HRb, P=.25; FRb,
P=.33; for AREA-SW: HRT, P=.08; HRb, P=.86; FRb,
P=.25).

Since at least 1 of the distributions for each parameter was
not normal, nonparametric statistical analyses were applied.

For the MVELO parameter, data were normally distributed
across all conditions. However, Levene test revealed that the
variances among the different conditions were not homogene-
ous (P value <.05). Consequently, a nonparametric test was
also used for this parameter.
CoP-Derived Parameters
Descriptive statistics at the individual level, and descriptive
and inferential statistics at the group level for MDIST,
MVELO, AREA-CE, and AREA-SW, as obtained across the
4 collaboration modalities, are given in the following figures.

MDIST, an overall measure of excursion of the CoP from
its equilibrium position, was clearly and significantly higher
in Fu condition (4.21, SD 1.30 cm) than in all other condi-
tions, and this was confirmed also at the individual level
for almost every participant. In addition, as shown in Figure
6, FRb condition caused significantly lower values (1.55,
SD 0.50 cm) than both HRT (2.50, SD 0.67 cm) and HRb
(2.38, SD 0.59 cm), and this appeared also in all individu-
als but 2. No significant difference was observed between
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HRT and HRb conditions, as the result of different behav-
ior across participants. Regarding intraindividual variability,
we observed a reduced variability of MDIST across most

participants in FRb condition (0.34, SD 0.22 cm) as compared
with HRb (0.59, SD 0.23 cm), HRT (0.65, SD 0.37 cm), and
Fu (0.85, SD 0.36 cm).

Figure 6. Distribution of MDIST values. Upper panel, left: group mean values across the 4 collaboration modalities; upper panel, right: distribution
of intraindividual variability (SD across repetitions); lower panels: distribution of values for each participant. * denotes P<.05 as obtained from
inferential statistics; ** denotes P<.01 as obtained from inferential statistics. FRb: full robot; Fu: full; HRb: half robot; HRT: half robot touch;
MDIST: mean distance.

MVELO, an indicator of the amount of movement descri-
bed by the CoP trajectory, in general confirms what already
reported for MDIST: Fu condition determined higher values
(16.3, SD 5.2 cm/s) than all other collaboration conditions,
and in FRb, MVELO was significantly lower (7.9, SD 1.1
cm/s) than in all other conditions (11.1, SD 2.2 cm/s for HRb;
11.3, SD 2.9 cm/s for HRT). As depicted in Figure 7, these
figures were confirmed also at the individual level for all but

2 participants. In terms of variability, while we observed that
it was mostly reduced in the FRb condition (0.5, SD 0.3 cm/s)
as compared with all the other conditions (2.3, SD 1.0 cm/s
for Fu; 1.4, SD 0.5 cm/s for HRb), a significant decrease of
the variability was present also when moving from Fu to HRT
(1.4, SD 0.4 cm/s). Other variations were not significant at the
group level.
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Figure 7. Distribution of MVELO values. Upper panel, left: group mean values across the 4 collaboration modalities; upper panel, right: distribution
of intraindividual variability (SD across repetitions); lower panels: distribution of values for each participant. * denotes P<.05 as obtained from
inferential statistics; ** denotes P<.01 as obtained from inferential statistics. FRb: full robot; Fu: full; HRb: half robot; HRT: half robot touch;
MVELO: mean velocity.

AREA-CE, which quantifies the planar extent of coverage of
the CoP, displayed a behavior similar to what was seen for
MVELO: values resulted significantly higher in Fu (134, SD
91 cm²), and lower in FRb (22, SD 12 cm²) than in all the
other conditions (64, SD 32 cm² for HRT; 47, SD 24 cm²

for HRb), respectively (Figure 8). Again, FRb intraindividual
variability was lower in FRb (10, SD 7 cm²) than in all other
conditions, and we saw a reduced variability when passing
from Fu (45, SD 23 cm²) to HRb (21, SD 12 cm²).
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Figure 8. Distribution of AREA-CE values. Upper panel, left: group mean values across the 4 collaboration modalities; upper panel, right:
distribution of intraindividual variability (SD across repetitions); lower panels: distribution of values for each participant. * denotes P<.05 as obtained
from inferential statistics; ** denotes P<.01 as obtained from inferential statistics. AREA-CE: confidence ellipse area; FRb: full robot; Fu: full; HRb:
half robot; HRT: half robot touch.

Finally, AREA-SW, a planar measure that combines CoP
extension and velocity, displayed behavior similar to what
obtained with MDIST: Fu caused significantly higher
AREA-SW values (16.2, SD 8.4 cm²/s) than all the other
conditions (8.4, SD 3.7 cm²/s and 7.3, SD 2.8 cm²/s for HRT
and HRb, respectively), and again FRb brought to values
lower (4.0, SD 1.6 cm²/s) than all the other collaboration

modalities (Figure 9). Both these results were reflected at the
individual level for all participants but one. Intraindividual
variability of AREA-SW was significantly lower in FRb (0.9,
SD 0.4 cm²/s) than in all other conditions (4.4, SD 2.2 cm²/s;
2.5, SD 0.8 cm²/s; and 2.5, SD 1.2 cm²/s for Fu, HRT, and
HRb, respectively).
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Figure 9. Distribution of AREA-SW values. Upper panel, left: group mean values across the 4 collaboration modalities; upper panel, right:
distribution of intraindividual variability (SD across repetitions); lower panels: distribution of values for each participant. * denotes P<.05 as obtained
from inferential statistics; ** denotes P<.01 as obtained from inferential statistics. AREA-SW: sway area; FRb: full robot; Fu: full; HRb: half robot;
HRT: half robot touch.

Discussion
Principal Findings
The analysis of the CoP trajectories shows that consider-
ing data obtained in tests going from the absence of cobot
intervention (Fu) to the ones with maximum cobot assistance
(FRb), the area of the CoP trajectory significantly decreases,
thus possibly indicating a lower amount of oscillations of the
body when the cobot intervenes.

As a general consideration, CoP trajectories, when no
action of the cobot is present, tend to show greater inten-
sity toward the loading area, indicating a higher amount
of sway. This suggests that lifting affects balance control
strategies. On the other hand, in both tests involving partial
cooperation with the cobot, the CoP draws trajectories mainly
toward the arrival station, even in the HRT modality, where
the participant’s arm moves toward the starting station

direction to ask the cobot for help. This aspect suggests that
the movement of the arm while carrying the load notably
influences the CoP trajectory, while the arm movement,
required to ask the cobot for help occurring in the HRT
condition, does not produce a significant influence on the CoP
trajectory, as compared with the modality where the cobot
independently carries the load to the scanning zone (ie, HRb
collaboration modality).

Regarding the detailed analysis of the specific CoP
trajectories of all subjects and for all test types, results
show that during tasks performed alone, CoP paths can be
classified into two types: (1) concentrated with symmetrical
movements toward both the starting and arrival stations (right
and left), and (2) more scattered with a tendency to oscillate
between the central rest zone and the arrival station (left). The
variability of CoP trajectories across individuals may confirm
the adoption of different independent control strategies, as
also identified by the 2 types listed before. When instead
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maximum assistance by the cobot is present, areas drawn by
CoP are smaller, and with a reduced interindividual variabil-
ity. This homogenization effect can be explained by the fact
that the cobot sets the activity’s pace, causing the subject
to adopt a more uniform behavior and timing. This is both
apparent at the individual level (ie, each subject tends to
maintain a more uniform CoP trajectory across repetitions),
and at the group level.

Results coming from the qualitative description of CoP
trajectories were also confirmed by statistical analysis of
CoP-derived parameters: specifically, CoP tends to travel
more (MVELO and, to a certain extent, AREA-SW) and
further (MDIST and AREA-CE) if the level of intervention
from the cobot increases. In general, smaller excursions can
be associated with improved balance: this means a higher
tendency to remain in a smaller (and generally more stable)
area during task repetitions. A possible interpretation is that
while the cobot influences task execution, it also makes
the operator move less with reduced postural oscillation.
This aspect is relevant as an increased excursion from the
equilibrium position and increased movement of the CoP are
associated with an increased risk of falling [28], and incorrect
postures in the working scenario are agreed to lead to the
development of MSDs [29]. As seen from this perspective
only, the modality of full assistance by the cobot brings to
the lowest risk, as it clearly leads to minimal excursions and
movements of the body.

However, we also observed a marked reduction of
intraindividual variability of these parameters when full
assistance from the cobot is present: one hypothesis for
this evidence is that the presence of the cobot reduces
autonomy in task execution and may thus impose a control
strategy which is not necessarily beneficial (or chosen) by
the operator. If a reduction of variability of such parame-
ters from the baseline condition may be seen as an indica-
tor of long-term discomfort, this needs to be appropriately
considered when designing the most beneficial collabora-
tion modalities. In this regard, intermediate collaboration
modalities seem to incorporate a tradeoff between the
advantages in the carrying task compensation given by the
cobot on the load and the possibility of granting autonomy to
the operator during the task execution.

Regarding the 2 collaboration modalities that maintain
a material operator intervention, statistical analysis at the
group level was rather inconclusive: in excursion-based CoP
parameters, no difference was found, and this is counterintui-
tive, considering that one of the modalities required partici-
pants to raise the arm and kinematically reach out to ask
for assistance. This was not reflected in most CoP-derived
parameters, and the possible explanation for this absence of
differences may be ascribed to the inherent nature of the
CoP variable: it is only indirectly associated with whole body
movement: coming from the ground reaction forces, it is
a measure of where the foot pressure is concentrated [30].
In static conditions, CoP basically tracks the body barycen-
ter projection to the ground (and dynamically overtakes it
in specific conditions) to counteract balance disequilibrium.
According to the inverted pendulum hypothesis, the body

barycenter projection is thus a filtered version of the CoP
trajectory. However, with self-initiated body part movements,
the central nervous system is able to predict future whole-
body excursions [31], and the position of the CoP may not
necessarily reflect the excursions of the body barycenter.
If this were the case, activation of the relevant muscles
(typically, tibialis anterior) would appear in anticipation of
the upper limb movement.

Regarding the inconclusive results appearing between the
2 modalities where collaboration was midlevel (ie, HRb
and HRT), we tend to ascribe this process to a rather
diverse behavior observed at the individual level: decrea-
ses of measures of CoP excursion and movement were in
some individuals clear when decreasing the amount of user
intervention (ie, passing from HRT to HRb), however this
effect disappears in a nonnegligible share of individuals;
as it was apparent from the qualitative description of CoP
trajectories, 2 different group behaviors seemed to emerge:
in one group, CoP is maintained compact despite the lesser
level of cobot intervention as compared with FRb, while
the second group displays higher amounts of excursion and
movement. We were not able to ascribe this phenomenon
to specific individual characteristics; whole body kinematics
and electromyography activity analysis may help shed light
on this, in particular, to check if this evidence might be
associated with task role-taking, which may be a key factor in
HRC activities [32].

Reduced postural variability, as evidenced by the
decreased CoP trajectory area and reduced inter and
intraindividual differences under maximum cobot assistance,
can have significant long-term implications for musculoskele-
tal health. A prolonged state of limited variability in posture
and movement, while potentially stabilizing in the short term,
may contribute to the development of MSDs over time.
This is because variability in postural strategies allows the
redistribution of mechanical loads across different tissues
and joints, reducing the risk of overuse injuries or chronic
strain on specific musculoskeletal structures. Conversely,
homogenized and repetitive postures imposed by external
systems, such as cobots, may lead to localized fatigue,
reduced muscular engagement, and impaired adaptability of
the neuromuscular system. Consequently, these factors can
heighten the susceptibility to cumulative trauma disor-
ders, particularly in dynamic occupational scenarios. These
findings highlight the importance of designing collaborative
robotic systems that balance task support with opportunities
for natural and varied movement patterns to mitigate potential
long-term health risks for operators.

The implications of these findings for industrial settings
may be interesting. The integration of cobots can significantly
enhance worker safety and productivity by reducing physical
strain and improving postural control. By enabling safer
and more ergonomic working conditions, cobots can play a
crucial role in creating healthier work environments, reducing
the incidence of work-related MSDs, and improving worker
satisfaction.
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In general, referring to the obtained results, it must be
remarked that the tasks analyzed were simulated rather than
conducted in real-world contexts, so further analysis could
be conducted to generalize the findings. However, the tests
conducted in this study, even if simulating a cashier task,
represent real work tasks themselves, and this supports the
hypothesis that similar results can be obtained in the real
world. Additionally, the sample consisted exclusively of
young male participants, so a direct validation on female
subjects and older ones was not conducted. Rather than a
limit, this might be seen as a validation for the examined
population, although it can be extended to other worker
categories.
Conclusions
This study investigated the biomechanical impact of various
levels of HRC on postural control during working tasks while
standing, providing substantial insights into the benefits of
cobot assistance for workers’ safety and ergonomics. Through
an analysis of CoP trajectories and related parameters, it
was found that higher levels of cobot collaboration, partic-
ularly in the HRT, HRb, and FRb modalities, significantly
improved postural stability and reduced biomechanical load
on workers. These findings suggest a decreased risk of MSDs,
as evidenced by lower values in CoP-derived parameters
when cobot assistance increases. The study also highligh-
ted that the intraindividual variability of CoP parameters
diminished when levels of cobot involvement were increased:
this indicates on one side that cobot integration promotes
more uniform ergonomic benefits across different individuals,
but at the same time it may tend to impose a similar behavior

in balance control which can lead subjects to adopt less
ecological strategies.

Moreover, while participants can set autonomously their
repetition pace, HRC activities will determine an increased
homogenization of repetition rhythm (or parts of it) across
workers, and this may potentially lead to decrease ergonom-
ics, as subjects can feel forced to perform the required tasks
based on timings dictated by HRC. Intermediate collaboration
modalities, such as HRT, can provide both advantages in
terms of reduction of CoP-derived parameters—that can be
indirectly associated with a reduced biomechanical risk—with
the possibility of selecting a more comfortable rhythm in
executing tasks.

However, further research is needed to explore the
long-term effects of cobot assistance on worker health and
productivity. In particular, future studies should include other
sensing technologies, able to capture the neuromechanics of
HRC. In addition, application to diverse populations and
real-world industrial settings to generalize the results and
provide a more comprehensive understanding of the benefits
and potential challenges of cobot integration. Additionally,
exploring the psychological and social impacts of working
with cobots on employees would provide a holistic view
of the implications of collaborating scenarios in industrial
environments: if properly integrated into working environ-
ments cobots can potentially revolutionize industrial work
by enhancing safety, efficiency, and ergonomic well-being,
facilitating the development of more intelligent and flexible
workrooms and working conditions.
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