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Abstract

Background: The opaque nature of artificial intelligence (AI) algorithms has led to distrust in medical contexts, particularly
in the treatment and monitoring of atrial fibrillation. Although previous studies in explainable AI have demonstrated potential to
address this issue, they often focus solely on electrocardiography graphs and lack real-world field insights.

Objective: We addressed this gap by incorporating standardized clinical interpretation of electrocardiography graphs into the
system and collaborating with cardiologists to co-design and evaluate this approach using real-world patient cases and data.

Methods: We conducted a 3-stage iterative design process with 23 cardiologists to co-design, evaluate, and pilot an explainable
AI application. In the first stage, we identified 4 physician personas and 7 explainability strategies, which were reviewed in the
second stage. A total of 4 strategies were deemed highly effective and feasible for pilot deployment. On the basis of these strategies,
we developed a progressive web application and tested it with cardiologists in the third stage.

Results: The final progressive web application prototype received above-average user experience evaluations and effectively
motivated physicians to adopt it owing to its ease of use, reliable information, and explainable functionality. In addition, we
gathered in-depth field insights from cardiologists who used the system in clinical contexts.

Conclusions: Our study identified effective explainability strategies, emphasized the importance of curating actionable features
and setting accurate expectations, and suggested that many of these insights could apply to other disease care contexts, paving
the way for future real-world clinical evaluations.

(JMIR Hum Factors 2025;12:e65923) doi: 10.2196/65923
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Introduction

Background
While the role of artificial intelligence (AI) in health care is
growing, concerns about its reliability and transparency remain
largely unaddressed [1]. The opaque nature of AI algorithms
challenges trust, particularly in cardiology, where the lack of
interpretability in deep learning models limits their adoption
and utility [2,3]. This has led to increased interest in developing
explainable AI models that offer accurate predictions along with
clear explanations of the rationale behind the predictive results
[4].

Our study explored the advantages and challenges of using AI
models in cardiovascular treatment, focusing on designing an
explainable AI system to aid posttreatment care for patients
with atrial fibrillation (AF) after catheter ablation. There were
>3 million new cases of AF, a common arrhythmic disorder [5],
in 2017, with numbers expected to rise due to aging [6].
Although often undetected, AF is a significant risk factor for
severe conditions such as stroke or heart failure [7] and can
greatly impact patients’ quality of life [5,8]. While catheter
ablation is effective, AF can recur after ablation, requiring
careful monitoring of risk factors [9].

Several machine learning models, from screening algorithms
[10,11] to those predicting AF recurrence after ablation [12],
have been developed, but integrating them into health care
remains challenging. Physicians often require detailed
justifications due to prediction uncertainties. While explainable
AI algorithms [5,13] could assist, a more holistic approach is
needed in posttreatment scenarios to effectively integrate
additional information, which remains poorly understood in
real-world care contexts (discussed in the next section).

To better integrate a machine learning model into the ongoing
decision-making ecosystem and identify unmet clinical needs
beyond performance optimization, we used a user-centered,
iterative design approach to develop AF’fective, an explainable
AI system for posttreatment monitoring of patients with AF.
By conducting semistructured interviews, design sessions, and
focus groups with 23 cardiologists, we aimed to identify key
principles for the effective design and use of explainable AI in
real-life cardiac treatment and management. In this section, we
first review the development of explainable AI in relevant fields
in the second subsection and summarize our first 2 study stages
in the third subsection. We then detail and discuss our final-stage
findings and conclude with reflections on the study’s
implications and the generalizability of our insights.

High Accuracy but (Still) Rejected: Machine Learning
Models in Cardiology
Cardiology is one field of medicine that has seen extensive use
of AI to aid in medical practice. Various machine learning
models have been developed and used to assist in a wide range
of tasks, from helping predict the prognosis or readmission after
heart failure [14,15] to detecting various cardiovascular diseases
from medical images [16]. In the area of arrhythmia, previous
studies have focused particularly on two key areas: (1)
prevention, which involves assisting in the early detection of

various arrhythmic conditions; and (2) monitoring, which
involves supporting the management of such conditions after
treatment [17]. In the preventive area, researchers have shown
how machine learning models could be developed and used to
detect irregular conditions using electrocardiography (ECG)
signals [18] or even through photoplethysmography sensors
from commercially available smartwatches [19,20]. In most
cases, such models were able to diagnose these irregular
conditions with a high degree of accuracy (97%) [20]. However,
the potential for a high rate of false positives when implemented
through commercial smartwatches has triggered concerns among
researchers, and as a result, they have cautioned against using
such systems for population-wide screening and emphasized
maintaining the 12-lead ECG as the gold standard [21]. Given
the prevalence of AF, several of the developed models in this
domain have chosen to focus specifically on this condition, with
various deep learning ECG models being developed to help
screen people for AF, stratify patients based on their risk level,
and even predict the chances of the condition occurring in the
future (see the study by Sehrawat et al [21] for a comprehensive
review).

In the monitoring area, to support posttreatment care, previous
studies have developed models capable of predicting patient
mortality or echocardiographic response after procedures such
as cardiac resynchronization therapy [22]. Other studies have
even shown how the risk of recurrence for conditions such as
AF could be predicted using patient demographics and 3D
computed tomography images of the left atrium [23]. Similarly,
several studies have demonstrated how the recurrence of AF or
30-day hospital readmission after catheter ablation can be
predicted using various deep learning and non–deep learning
strategies (eg, convolutional neural network [CNN] and Extreme
Gradient Boosting) [12,13,24]. In other cases, deep learning
algorithms have also been developed to detect an AF episode
4.5 minutes before onset, thus enabling prompt interventions
to prevent their occurrence [25].

Overall, while the findings of these studies all appear to
demonstrate significant potential for implementing predictive
models to support AF treatment, we have encountered
substantial pushback from clinical partners when attempting to
implement such a model in clinical practice. Despite the
promising performance of the model in the study by Nishimura
et al [26] (area under the curve of 0.72 with 83% sensitivity and
58% specificity), there was still strong resistance from
physicians regarding trusting the predicted outcomes. Such
hesitation and resistance to adopting machine learning models
among clinical staff have also been frequently identified in
previous studies [1,27]. Given the delicate and often critical
nature of treatment in this field, it is not surprising that the lack
of interpretability undermines trust in these models, preventing
clinicians from using them in medical treatment (see the study
by Petch et al [2]). Moreover, the opaque process raises concerns
regarding how mistakes could be rectified, not to mention that
it may cause potentially disruptive emotions when discussing
such results with patients. Therefore, at present, the high
accuracy, accessibility, and (possibly) low cost of machine
learning models often do not lead to their adoption in medical
practice.
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Explainable AI in AF
Recently, explainable AI has gained attention as a potential
approach to address these issues of transparency and
interpretability [28-30]. In the context of AF treatment, ECG
data are generally used as a main data source for screening
irregular rhythm and predicting the risk of AF recurrence, and
as such, explainable AI techniques such as Shapley Additive
Explanations (SHAP) have been used with the ECG data to
identify features contributing to the predictive outcomes [31].
In previous studies, researchers have proposed an explainable
deep learning model that not only detects AF but also describes
the reasons behind their decisions and visualizes key regions
within the ECG signal identified as important predictors using
techniques such as Gradient-Weighted Class Activation
Mapping (Grad-CAM) or a deep visual attention [29,32,33].
Building upon earlier models, researchers such as Raza et al
[34] incorporated federated learning techniques alongside
explainable AI to preserve patient ECG data privacy. In more
recent studies, explainable models have even been created that
are capable of identifying patients at high risk after catheter
ablation and highlighting the features (eg, type of AF, age, and
left atrial diameter) that the model used to decide on the risk
level for each patient [30]. The use of “explainable” models in
this manner has been argued to have the added benefit of
allowing clinicians to better understand the relationship between
each contributing factor and the predicted outcome of an
individual case, helping clinicians justify their decisions and
treatments more effectively [35].

While explainable AI techniques are believed to enhance the
interpretability of algorithms, incorporating them to truly
improve patient outcomes in real-life medical contexts remains
challenging [36]. Understanding of the strengths and limitations
of these approaches in different use cases and how human and
AI-based diagnoses can complement each other is still lacking
[36]. Deploying these models effectively requires a thorough
examination of the patient journey and adapting the explainable
strategy accordingly. Recent studies [37,38] have begun to
address these issues by examining the use of explainable AI in
more realistic settings with various stakeholders to ensure safe
adoption in clinical practice.

Overall, although the integration of explainable AI into medical
contexts holds great promise, it requires a concerted effort to
address technical, ethical, and practical challenges. Insights
from near-live and real-life case studies can help develop best
practices and trustworthy methods for implementing such
systems in clinical settings, thereby enabling users and
professionals to fully benefit from AI technology.

Early Study Stages and Findings in a Nutshell
In this section, we summarize and report the in-depth insights
from the 2 early stages of interviews (partially reported as a
poster in the study by She et al [39]) and group design sessions
to conceptualize and pilot-test our design strategies and
prototype. We chose to include some key findings from these
early stages to enhance readers’ understanding of our design
decisions in developing the final prototype for evaluation.

Stage 1

Overview

In the first stage, we conducted semistructured interviews with
physicians to gain insights into their experiences and best
practices for posttreatment care of patients with AF. Physicians
were asked to share their positive and negative experiences,
communication strategies, and effective procedures for
monitoring posttreatment patients with AF. To sensitize and
prepare participants, we provided a 1-week workbook with
reflection exercises sent 1 to 2 weeks before the interview. Each
interview lasted approximately 45 minutes and was fully
recorded with the consent of the physicians.

Participants

We invited 8 physicians from different specialties, such as
emergency medicine, internal medicine, and cardiology, to join
us for interviews at Kyoto Prefectural University of Medicine
in Japan. We made sure to include a mix of experience levels
and backgrounds in cardiology to obtain insights that could be
more broadly generalized to other medical contexts.

Measurements and Study Apparatus

A week before the interview, each physician received a toolkit
to reflect on their clinical practice. The toolkit included a
workbook with 7 daily assignments on their experiences and
patient interactions as well as stickers featuring emotional words
and contextual images to help express their thoughts and
feelings.

Study Process

We asked physicians to reflect on their process for diagnosing
patients and explaining treatment plans, especially in difficult
situations such as delivering bad news. They were also asked
to share strategies for handling uncooperative patients or those
who rejected treatment. Physicians were encouraged to use the
2 sticker sets to respond to workbook questions or use them as
interview resources. During the interview, physicians were
guided through the workbook to discuss their specific
approaches, experiences, motivations, stressors, and methods
for negotiating treatment plans.

Analysis

In total, 2 researchers from the human-computer interaction
(HCI) field and a cardiologist analyzed the interview data, with
all recordings fully transcribed. The HCI researchers developed
design strategies through thematic analysis, whereas the
cardiologist reviewed and selected strategies for further
evaluation in stage 2.

Results

Our initial interviews with 8 physicians produced 2 key outputs:
4 physician personas (teamworker, minimum effort professional,
the veteran, and self-actualizer) and 7 design strategies for
explainable prediction. Each persona included
pseudodemographics and progress bars depicting their
personalities across 4 parameters: passionate/realistic,
rookie/veteran, work-oriented/life-oriented, and
individualism/collectivism.

JMIR Hum Factors 2025 | vol. 12 | e65923 | p. 3https://humanfactors.jmir.org/2025/1/e65923
(page number not for citation purposes)

She et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The research team discovered that participants had common
concerns about self-efficacy in patient treatment, feeling
validated when treatments succeeded but disempowered when
seen as incompetent. This insight led to the development of 7
design strategies for explainable prediction. Participants
emphasized the need to justify decisions by clearly explaining
issues such as ECG results to patients. We reviewed and adapted
explainable AI strategies from previous studies [40] for

cardiology. The seven strategies were (1) highlighting key ECG
features (strategy A), (2) comparing with historical predictions
(strategy B), (3) simulating extreme ECG outcomes (strategy
C), (4) comparing with similar patients (strategy D), (5) showing
similar training examples (strategy E), (6) providing an
at-a-glance mode (strategy F), and (7) explaining through
established ECG principles (strategy G; Figure 1 [39]).

Figure 1. The 7 explainable artificial intelligence strategies (A-G) that were examined in the initial 2 stages of the study, expanded from the previous
publication [39]. AF: atrial fibrillation; bpm: beats per minute; ECG: electrocardiography; PA1: patient 1; PA2: patient 2; PA3: patient 3.

Stage 2

Overview

In the second stage, we evaluated the feasibility of the 7 design
strategies from the first stage, focusing on those that could be
implemented using explainable AI. Physicians first described
their usual process for assessing recurrence risk and discussed
the potential role of predictive models and explainable AI. We
then introduced the explainable AI strategies and gathered
detailed feedback on which would most effectively clarify
predicted outcomes for other physicians and patients.

Study Process and Findings to Guide the Prototype
Development

We conducted 2 group design sessions with 8 cardiologists to
critically review and assess our design strategies. Initially, 5
cardiologists were asked to evaluate the advantages and
disadvantages of each strategy, describe scenarios in which they
would be useful, and reflect on their concerns regarding
implementing such explainable features.

From the 7 proposed strategies, we selected 4 (strategies A, B,
D, and G) for further development into a web-based prototype
using a high-fidelity explainable CNN model with real patient

data. In total, 3 cardiologists reviewed the prototype using the
concurrent think-aloud approach [41] and provided feedback.
They also discussed concerns about using AI during
posttreatment care, specifically on whether the explainable
features enhanced their trust in the AI system and how the
system might add or reduce value in their practice.

Participants

A total of 5 cardiologists with experience treating AF were
recruited from Kyoto Prefectural University of Medicine to
assess the explainable AI strategies. In addition, 3 cardiologists
from the same institution were brought on to evaluate a
web-based prototype.

Results and Study Apparatus Development

The 4 effective design strategies identified were highlighting
contributing features (strategy A), comparing with past
predictors (strategy B), comparing with other patients (strategy
D), and explaining through established principles (strategy G).
Participants’ choices were guided by 3 principles: discernibility
(highlighting relevant noteworthy parts), comparability (intra-
and interpersonal comparisons), and evidence-based approaches
(derived from diagnostic examples or clinical literature).
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Strategies to avoid included non–evidence-based methods and
those showing only partial graphs.

In general, physicians were highly receptive to the AF’fective
prototype, particularly its explainable features, which they found
useful for evaluating treatment effectiveness in posttreatment
monitoring. On the basis of their feedback, we advanced to
web-based prototyping.

The web-based prototype was developed using Figma (Figma,
Inc), a popular tool among user experience (UX) designers for
creating high-fidelity and web-based prototypes at minimal cost
during the development process. Our prototype comprised 2
main screens: a patient overview screen and an individual health
record dashboard (to avoid repetition of similar images, we
share the screenshots from the final system in this paper instead;
Figures 2 and 3).

The overview screen displays patients’demographic details and
predicted recurrence risks, allowing cardiologists to sort by
various demographic and risk factors. The health record
dashboard displays (comparable and evidence-based) health
information gathered from a patient’s previous visits. Our
predictive model will automatically extract and highlight
keywords or risk factors based on the patient’s visits and health
data. In addition, the model differentiates the importance of the
risk factors and offers 3 tiers of ECG result presentation based
on the level of urgency for physicians: no highlight, full
highlight, and critical highlight only.

In critical highlight mode, only urgent health information is
shown, whereas the full highlight mode displays all details,
including less urgent AI highlights. Validated risk factors are
listed as diagnostic keywords in the right panel, helping
physicians quickly identify the main contributors to the
predictive outcome.

Figure 2. The patient overview screen.
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Figure 3. Screenshot of the patient page, including extra risk factors. ECG: electrocardiography.

Methods

Overview
Our research followed a 3-phase approach collaborating with
stakeholders familiar with AF management. In the first phase,
we conducted semistructured interviews with 8 cardiologists to
explore potential explainable AI strategies for postablation care.
From these insights, we developed 7 design concepts, which
were then critically assessed and refined by another 8
cardiologists in the second phase. This process led to the
selection of 4 explainable strategies. In this section (the final
phase of the study), we built a functional prototype incorporating
real patient data and invited a third group of 7 cardiologists to
evaluate its effectiveness and feasibility in clinical settings.

Ethical Considerations
This study received ethics approval from the relevant
institutional review boards (IRBs) in Japan, including the Kyoto
Institute of Technology IRB (2021-08) and the Kyoto Prefectural
University of Medicine IRB (ERB-C-2014). Informed consent
was obtained from all participating physicians, who volunteered
to take part in the study without receiving any compensation.

To ensure the privacy and confidentiality of patient health data,
all personally identifiable information, including patients’
names, was removed and replaced with unique codes. This
anonymization process ensured that no data could be traced
back to individual patients.

Stage 3
The web-based prototype from the previous stage was developed
into a fully functional progressive web application (PWA)
prototype, which was then tested and evaluated by cardiologists.

Patient Data
A total of 11 postablation patients consented to provide data
for the prototype. Protected health information, such as names
and birthdays, was masked or replaced due to IRB requests, but
other health data (eg, ECG, body measurements, blood pressure,
and visit history) were used to closely resemble the original
patient health data for a realistic prototype.

Participants
In total, 7 cardiologists involved in the treatment of AF were
recruited from the Kyoto Prefectural University of Medicine in
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Japan. All of them had experience diagnosing patients with AF
and performing catheter ablation.

Measurements and Study Apparatus
In total, 3 widely adapted UX-related questionnaires were
implemented in our study: the User Experience Questionnaire
(UEQ), technology acceptance model (TAM), and Mobile App
Rating Scale (MARS). The rationales for including these
questionnaires are explained in the following sections.

UEQ Inclusion Rationale

The UEQ, developed by Laugwitz et al [42] in 2008, consists
of 26 items across 6 dimensions: attractiveness, perspicuity,
efficiency, dependability, stimulation, and novelty. The scale
ranges from −3 (most negative) to +3 (most positive). Scores
closer to 0 are considered “neutral.” A data analysis tool is
provided for interpreting the results, with benchmarks in 5 tiers:
excellent, good, above average, below average, and bad [43].
Our goal during prototyping was to achieve above-average
ratings. The English version was translated into Japanese.

TAM Inclusion Rationale

Previous research suggests that a user’s intention to use is the
primary predictor of actual system use [44]. To ensure that our
PWA was both useful and usable in a medical context, we
implemented the TAM to assess user acceptance and intention
to use our explainable AI system. Originally developed by Davis
et al [45], the TAM is a key model in new technology
development. We adapted it for our PWA evaluation focusing
on 3 dimensions: efficiency (perceived usefulness), ease of use
(perceived ease of use), and intention to use (behavioral
intention to use). For the TAM, a 7-point Likert scale is used,
ranging from 1 (strongly disagree) to 7 (strongly agree). A
score of 4 represents neutrality.

MARS Inclusion Rationale

Despite its name, the MARS is widely used to assess the quality
of health applications across various types of digital platforms.
It evaluates 4 dimensions: engagement, functionality, esthetics,
and information quality [46,47]. We selected the MARS to
assess the information quality of our PWA using the Japanese
translation by Yamamoto et al [48]. The MARS uses a 5-point
Likert scale ranging from 1 (inadequate) to 5 (excellent). Scores
of >3 are considered above average.

AF’fective: The Web-Based PWA
A fully web-based PWA was developed using the Ionic
framework (Drifty) for the front end and Python (Python
Software Foundation) for the back end. Access was strictly
controlled through an authentication system to ensure data
security. The PWA included 2 main pages that were developed
based on our explainable strategies: a patient overview screen
(corresponding to strategy D) and an individual health record
dashboard (corresponding to strategies A, B, and G). One
noteworthy change was made to our predictive model, which
also influenced our explainable features. On the basis of
physicians’ feedback, we omitted direct highlights on the raw
ECG graph in stage 2 (using Grad-CAM; see the demonstration
in Figure 1 [39]) and, instead, used the 7-item features derived
from the standardized clinical interpretation of ECG graphs

(corresponding to strategies A and G in particular; see the
demonstration in Figures 4 and 5). In particular, we replaced
the explainable AI model used in previous stages with a SHAP
model [49], which was constructed to highlight the extent to
which different key clinical features—commonly used as
established interpretation principles in AF prediction for ECG
data (eg, maximum P wave duration and augmented vector right
[aVR]/first precordial lead [V1])—contributed to the
decision-making process for strategy G. Therefore, the predictive
model was updated from a CNN model (image based) used in
the previous 2 stages to a Cox regression model (feature based)
[26] to accommodate the introduction of 7 standard features for
prediction (and, later on, SHAP for explaining). While
physicians were not shown the Cox regression model’s
performance to avoid biasing them, it achieved strong
evaluations, with an area under the curve of 0.72, sensitivity of
83%, and specificity of 58%. The model was trained on data
from 502 patients, with an average follow-up of 6.2 (SD 3.5)
years. A total of 13.1% (66/502) of the patients developed
new-onset AF [26].

These standardized clinical explainable features are included
in the following list. These features were derived from the
interpretation standards that cardiologists commonly apply when
reading an ECG graph and assessing a patient’s risk level. As
indicated in our previous studies, while directly highlighting
sections of the ECG graph that contributed to the predictive
model’s output can explain the model’s prediction, it does not
aid physicians in interpreting the graph. To enhance the
interpretability and physician-friendly explanation, we asked
cardiologists to standardize their interpretation of the ECG graph
into higher-level features that are more straightforward and
easier to understand for their fellow cardiologists. Our previous
work [26] provides details on training a predictive model based
on these new features:

1. Max P wave duration >125 ms: whether the maximum P
wave duration is >125 ms

2. aVR/V1<1: whether the amplitude ratio of the P wave is
<1

3. Amplitude V1≥10: whether the P wave amplitude in V1 is
>0.1 mV

4. Amplitude aVR<4=0: whether the P wave amplitude in the
lead aVR is <0.04 mV

5. PAC on ECG=1.0: whether there was one or more
supraventricular ectopies during recording (removed in the
latest model for simplicity from the work by Nishimura et
al [26])

6. RV5SV1≥2.2=0: whether the amplitude (height) of the R
wave in the fifth precordial lead plus the amplitude (depth)
of the S wave in V1 is >2.2 mV

7. PR≥185=0: whether the interval between the P and R waves
is >185 ms

The individual health record dashboard (as shown in Figure 3)
also allowed physicians to check past visit ECG graphs and
explainable features (corresponding to strategy B). The
physicians can obtain an overview of the basic patient data in
the top left corner and then proceed to the raw ECG graph. In
the main graph section, they can choose between 2 types of
explainable models (see Figures 4 and 5 for the corresponding
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graphs) and add data from the patient’s history for comparison.
The right panel provides additional patient correspondence data
and physical measurements such as weight and blood pressure.
The standardized features made it easier to compare patients
when physicians navigated the patient overview board
(corresponding to strategy G).

We also developed 2 interfaces to summarize the explainable
features. The first interface (Figure 4) was developed using

SHAP, a popular tool for explaining the outcomes of machine
learning models [49]. It features a single bar chart that shows
the combined influence of risk and protective factors. The
second interface uses a pie chart to show the relative importance
of the 7 items and their risk or protective contributions to the
predictive outcome (Figure 5). Cardiologists were advised to
access it using a computer, although the site is also available
on mobile devices, to simulate their normal use context.

Figure 4. Screenshot of the explainable items and how they were displayed in the system—explainable model 1. ECG: electrocardiography.

Figure 5. Screenshot of the explainable items and how they were displayed in the system—explainable model 2. aVR: Augmented Vector Right; ECG:
electrocardiography. PAC: Premature Atrial Contraction; PR: PR Interval (the onset of the P wave to the start of the QRS complex).

Study Process
Each cardiologist participated in a 1-on-2 interview with an
HCI researcher and a cardiologist. Before the interview began,
the HCI researcher set the scene for the cardiologist using the
following statement: “You have 11 patients that you are
currently caring for. You can see a list of them in the AF’fective

system, which indicates their risks levels for recurrence.”
Participants were first briefed on the system and then asked to
test it by imagining the following four scenarios: (1) viewing a
patient’s status, (2) checking a patient’s ECG graph, (3) viewing
explainable model 1, and (4) viewing explainable model 2. We
then asked the cardiologists to complete the study measurements
(UEQ, TAM, and MARS, as described in a previous section)
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and began the semistructured interviews. Each interview lasted
45 minutes to an hour. All the interviews were conducted in
Japanese and fully recorded, including screen recordings of the
participants testing the AF’fective PWA.

Analysis
For the survey data, we calculated the mean and SD for each
item in all surveys except for the UEQ, which has its own
analysis tool in Microsoft Excel (Microsoft Corp) format. We
compared our mean scores for the TAM and MARS against the
theoretical average scores to determine whether physicians
experienced any usability issues related to the interface design,
functionality, information quality, or accessibility.

For the interview data, we reviewed and analyzed the transcripts
following the thematic analysis framework proposed by Clarke
et al [50]. The analysis was carried out by 3 researchers, 2 from
the HCI field and 1 with a cardiology background. As the 2 HCI
researchers were more familiar with the analysis method selected
and had a long history of conducting thematic analysis, the
initial formation of the themes was first conducted by them.
The HCI researchers first read through all the transcripts to
familiarize themselves with the content and highlighted
interesting quotes. The quotes were then summarized and
independently interpreted as “topics of interest” by the HCI
researchers. The researchers then grouped the topics into several
potential “themes” and involved the cardiologist to approve and
edit the themes. The cardiologist researcher then joined the
evaluation to come up with the final findings that were deemed
meaningful in both the HCI and medical fields.

Results

Overview
In the final stage, we recruited 7 male cardiologists (aged 31 to
55 years) with 8 to 30 years of cardiology experience. After the
interviews, they completed the surveys, and we calculated the
mean scores to identify potential usability or design issues. The
results suggested no significant usability problems, and the
prototype showed strong potential to motivate physicians’
intention to use it due to its ease of use, reliable information,
and explainable functionality. The detailed survey results are
reported in the following sections.

UEQ Results: Positive Perspicuity
The results from the UEQ showed that perspicuity received a
positive evaluation (mean 1.21, SD 0.96), whereas attractiveness
(mean 0.56, SD 0.71), efficiency (mean 0.625, SD 0.27),
dependability (mean 0.33, SD 0.27), stimulation (mean 0.5, SD
0.3), and novelty (mean 0.58, SD 0.27) received neutral
evaluations. Perspicuity stood out as the most positively
perceived aspect of the UX, suggesting that ease of use and
clarity are strong points of the AF’fective system. The neutral
evaluations for the other aspects (attractiveness, efficiency,
dependability, stimulation, and novelty) indicated that physicians
had average or mixed perceptions of these factors.

TAM Results: Above-Average Technical Acceptance
In addition, the TAM measures showed that perceived usefulness
(mean 4.22, SD 0.31), perceived ease of use (mean 5.13, SD

0.77), and behavioral intention to use (mean 4.77, SD 0.68)
scores were all above the average (mean 3.5). The behavioral
intention to use score indicated a strong intention to use the
AF’fective system. These results suggest that the identified
factors motivated users to engage with the system.

MARS Results: Perceived High Functionality and
Information Reliability
Finally, the results of the MARS showed above-average scores
for functionality (mean 4.25, SD 0.42), esthetics (mean 3.61,
SD 0.68), information reliability (mean 3.38, SD 0.54), and
perceived impact on practice (mean 3.33, SD 0.76). These results
indicated that users perceived high functionality and reliable
information from the AF’fective system, whereas they rated its
esthetics and perceived impact on practice as somewhat
mediocre. We were particularly interested in the physicians’
high ratings for information reliability as these suggested that
they felt confident in understanding and agreeing with the
predictive model’s decisions. Notably, this rating was achieved
without physicians knowing the predictive model’s performance.
This serves as a strong indicator that insights derived from
explainable models play a crucial role in physicians’adaptation
to our technology. This was deemed acceptable for a system in
its prototype phase.

Discussion

Principal Findings

Overview
Aligned with our positive survey results, cardiologists expressed
strong acceptance of the explainable features and willingness
to use the system during the in-depth interviews. They also
praised the system’s enhanced efficiency, comprehensibility,
comparability, consistency, and trustworthiness:

I think it is useful to be able to express in a general,
universal, numerical way what we used to say in the
past, like, “This person is likely to have a
recurrence,” by using a risk score. I think it is useful.
[P04; male]

In clinical practice, we honestly don’t have that much
time to look at ECGs and scores in detail, so I think
AI is a way to make it easier for us to get the numbers
out. [P07; male]

I think it is easy to pick up if you can tell from a quick
glance at the list that a person in red is at higher risk
of recurrence, or that a person in green has a low
probability of recurrence. [P06; male]

While most cardiologists in our study viewed the real
data–backed explainable AI system positively, we identified
potential concerns and (possibly) false expectations for its
real-life implementation. During the interviews, cardiologists
were asked to envision using the system in their daily routines,
leading to a realistic discussion after 2 rounds of iterative design.
This probing step was crucial for understanding the feasibility
and challenges of implementing the system in clinical settings.
Our findings are discussed in the following sections through 4
key themes.
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Explaining the Symptoms Does Not Equal to Identifying
the Causes
Perhaps due to our intentional mimicry of cardiologists’methods
for identifying irregularities in ECG graphs, participants showed
high acceptance of the predicted results after viewing our 7-item
AF clinical explainable features. In fact, P04 gave a very
positive endorsement of why the explainable items were
necessary:

I am of course curious as to why the risk was higher,
so the AI [predictive] model would be rather
meaningless without a graph [with explainable AI
items] that can explain it, or perhaps it would make
me wonder why the model [makes such a decision].
[P04; male]

According to P04, the predictive model’s results may fail to
convince them without an explanation of why the model makes
a particular decision. P04’s reaction suggests that physicians
find explanations based on the new clinical explainable features
both agreeable and trustworthy. However, a concern emerged
regarding the limitations of these features. A key request was,
“Then what should I do?”—cardiologists wanted to understand
the features influencing the risk score and actionable strategies
to address them. This aligns with previous insights showing a
preference for clear indicators and actionable steps. In one case,
P05 even suggested using the system to nudge patients toward
behavior change:

We are at a stage where only these numbers [of
explainable items] are available. 40 or something
like this is the only thing that comes out, so what
should I do [with each of the items]? [P04; male]

I feel that the numbers alone don’t mean much, or
don’t seem to lead to a change in [patient’s] behavior.
[P05; male]

It should be noted that physicians treated each explainable
feature as a “treatable item,” which was not possible with an
ECG graph–based explainable model. This improvement
suggests that converting graphical highlights into standardized
feature explanations can foster the expectation that addressing
each item will reduce the risk score. In our current phase, it is
still too early to determine how to further link our features with
treatment approaches; however, this does indicate an interesting
and operationalizable future implementation for explainable
models.

Hence, in our current system, while these features influence the
predictive outcome, clinical causal insights should be interpreted
with caution. Our 7-item explainable features are based on
standard ECG wave interpretation, identifying AF symptoms
but not directly indicating underlying causes such as excessive
drinking or sleep apnea. As noted in the document by Shapley
[51], estimating causal effects from explainable items can be
misleading. Cardiologists should be cautioned about this
limitation and guided to set appropriate expectations for
decision-making.

A key lesson from our interviews was the need for better
curation of explainable features in the model, especially in
clinical contexts. While various approaches provide transparency

in AI decision-making [31,39,52,53], it is crucial that the chosen
features are relevant, operationalizable, and actionable for
medical professionals. This focus ensures that AI predictions
are both understandable and practically applicable, enhancing
postablation patient care.

Window for Interpretation: When 0% and 100%
Recurrence Risk Does Not Exist
While a predictive model can theoretically provide risk scores
from 0% to 100%, in real life, extreme scores such as 0% or
100% are unattainable. Participants noted that the possibility
of such extreme scores diminishes the perceived realism and
reliability of the model’s predictions:

Theoretically speaking, it has to be 0, so even if it’s
low, it’s still bad. You can’t say 30 is a good thing.
There is still a chance for a recurrence...So there are
cases where it comes out as 0? (Cardiologist
interviewer: That would be considered extreme score.
Well, some might be zero, but I think the smallest is
probably 3 or 4 [in the natural clinical contexts].)
[P03; male]

I’m not quite sure what [the risk score] means. There
are a lot of questions about what 12 means and what
we should think about it. It’s not 0 [even for a normal
person], So are you saying that AF can happen to
anyone? (Interviewer: I don’t think we can lower that
number any further.) [P05; male]

In a similar manner, participants also questioned whether a
predictive score of 100% was at all meaningful in clinical
practice:

Are you saying that even if all of [the items] were full, it would
not be 100?(Interviewer: Even if [all of the items were] full, I
think it will probably be around 80-92, which is the highest risk
score [in the natural clinical contexts].) [P01; male]

It should be noted that it is uncommon for a predictive model
to yield a full 100% score in clinical contexts, particularly in
postsurgery contexts. The contributing factors would generally
contain complex interactions and dependencies.

Cardiologists emphasized that recurrence risk scores should be
viewed as reference points, not absolute indicators. Establishing
a threshold, such as 50, is essential for guiding actions, but
borderline scores (eg, 49 or 51) still warrant patient warnings
or follow-ups. Similar “borderline windows” were noted in a
grief-related study [52] where psychologists suggested taking
the score as a reference for concerning cases. Although the
width of the borderline window can also be highly subjective
for each individual cardiologist and possibly for patients, this
approach is common in clinical practice. Future studies should
develop nuanced protocols for borderline cases to prevent
misdiagnoses and patient stress, potentially standardizing risk
level interpretation, as suggested by P05:

I think it would be better to indicate the risk of
developing the disease on a 5-point scale, such as
low, medium, and high, because I don’t think there
is such a difference between 40 and 41. [P05; male]
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In treatment decision-making, another notable implication from
our findings was the patient’s presumptive belief that the risk
score should be 0%, particularly after undergoing ablation. It
was apparently conflicting with what the predictive model would
reveal:

However, if you think about it, after AF ablation, the
number of people who think that AF recurrence is
quite small. For example, more than 70% to 80% of
the patients think it is zero. [P03; male]

Even cardiologists familiar with the postablation risk might
expect that addressing the explainable items (see the Methods
section for more discussion on these items) could eliminate the
recurrence risk:

Considering the importance of risk scoring...I am
very interested in the explanatory factors or items
involved, and which of them are [positively correlated
to the risk score]. If the purpose of this system is to
follow up the patient, it would be even better if we
could get such risk factors and know what kind of
intervention is being done here. [P01; male]

It struck the research team that popular explainable AI
approaches could lead to misinterpretations and unrealistic
expectations, such as believing that a 0% recurrence risk is
easily attainable. Our study highlights the need to set accurate
expectations about what predictive results and explainable
features truly imply in a clinical context and how much they
can be influenced through intervention.

Offer a Holistic Risk Overview by Integrating Other Risk
Factors and Temporal Data
In our study, we adopted the flow of cardiologists’ diagnostic
process by reviewing ECG graphs and assessing the presence
of known risk factors one by one. Therefore, other known risk
factors, such as high blood pressure, smoking, and drinking,
were included as additional “risk factors” alongside the predicted
risk score derived from the patient’s ECG data. While we
believed that this approach resembled a cardiologist’s normal
decision-making procedure and would increase their acceptance
of the model’s predicted results, our interviewees expressed
concerns about the potential for the predictive model to yield
biased risk estimates:

There are many known risks that are commonly
associated with AF, such as high blood pressure,
obesity, lack of exercise, etc... Inputting it would
further make this risk [score], or perhaps, the
evaluation, more correct. [P03; male]

So we are predicting the risk score purely based on
ECG...If you are going to make progress, I think it
would be good to include obesity information, bmi,
waist circumference, and so on. [P06; male]

Furthermore, some of our participants also indicated that they
would prefer a clear display and association with the medications
or ongoing treatments that the patients are receiving. For
instance, P02 requested us to explore whether the explainable
model could reflect the effects of the patient’s medications, and
P01 indicated that it would be better to see which interventions
were done to lead to the risk score:

If there was information on arrhythmia medications,
it would be more useful. I think the doctor might be
able to think about it more holistically, such as, “This
ECG variation [highlighted by the explainable model]
is caused by the medicine the patient is taking.” [P02;
male]

If the purpose of this system is to follow up the patient,
it would be even better if we could get such risk scores
and know what kind of intervention is being done
here. [P01; male]

As the cardiologists pointed out, although our model provided
an overview of the other risk factors, it would only be
meaningful if they could establish a connection between the
variation in risk scores and the specific risk factors. Our findings
indicated that, for explainable elements to be truly useful in
real-life practice, they need to relate to more holistic and
treatment-related risk factors or medications. Otherwise, the
contribution of such a predictive, even explainable, model to
preventing disease recurrence would be quite limited.

In the end, perhaps the most important takeaway from the
interviews was the need to provide a holistic overview and
explanation of intrapatient temporal data and risk scores.
Echoing the insights from previous interviews, the design
strategy of comparing interpersonal ECGs (strategy G) was
heavily criticized by the physicians as individual risk factors
can vary significantly. However, comparing a patient’s current
and historical risk factors could provide valuable insights into
the evolution of these factors and potential trends in recurrence
risk. For instance, participants P04 and P06 described how they
would like to plan their interventions by tracking variations in
risk scores and identifying the underlying causal factors over
different time points:

For a patient with a high estimated risk this time, but
lower estimated risk in the previous times, why did it
become so high? What factors contributed to it? [I
would expect] this AI model to estimate and explain.
[P04; male]

I think it would be better to look at it...from a
longitudinal point of view...to see what kind of
intervention I should use, what’s going wrong, and
what the reason is for the increase [of the risk score].
[P06; male]

We were intrigued by the design opportunities revealed in our
findings. As cardiologists reminded us, a significant and crucial
aspect of their profession involves deciding on appropriate
interventions. Although explainable AI models have shown
promise in diagnosing and identifying patients at risk, they have
yet to offer actionable insights for intervention planning. We
believe that explainable AI tools should integrate comprehensive
patient data, including temporal variations in risk factors,
medications, and treatments, to enhance the model’s relevance
and utility in real-world settings. In addition, the insights
generated should be clearly linked to potential intervention
strategies that could influence risk scores. Without such
integration, the potential of explainable AI tools to contribute
meaningfully to patient care, particularly in preventing disease
recurrence, may remain limited.
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A Sense of Control and Learning From the Model
The findings of our interviews revealed that cardiologists valued
the sense of control and the learning opportunities provided by
these models, aligned with the findings in the previous rounds
that suggested a self-actualizing and constant learning side of
cardiologists.

One of the key insights that emerged from our study is the
potential of explainable AI models to help cardiologists
prioritize patients at higher risk. As P04 addressed, there was
a potential for these models to become an integral part of daily
practice:

If it becomes a habit, I will probably look at people
with high estimated risk and wonder why they were
at higher risk. [P04; male]

Moreover, P02 also offered a similar thought regarding triaging
patients based on the risk scores:

So the follow-up should be more thorough, and those
who are more likely to be affected [by the recurrence
risk] should be followed up in a shorter period of
time. [P02; male]

By discriminating the patients that need urgent attention,
physicians gain a sense of control over who to allocate more
time and treatment resources to. Cardiologists indicated that
such a potential new routine would enhance their work
efficiency and allow them to spare cognitive capacity for more
critical treatment planning. Interestingly, our interview findings
suggest that cardiologists may appreciate useful “hints” or
“interpretations” from explainable models to help them narrow
down potential problems:

I understand that the ECG is used as the reference,
but I think it would be easier to understand if there
was an explanation of what is of interest in this ECG,
even though those who understand may [already]
understand it. [P01; male]

The power dynamic between cardiologists and the AI model is
worth exploring. To what extent should an AI model’s
interpretations be considered, and to what extent should
cardiologists accept its suggestions? These boundaries are
critical to explore to ensure that the final AI models can be
effectively integrated into the patient care routines.

Further enhancement of control over the prevention procedure
might also occur as cardiologists begin to learn more from
AI-augmented interpretation and actionability. Interestingly,
the explainability of AI models appears to increase cardiologists’
desire to validate their treatment approaches:

So, at the time of the ablation, if I burn the tricuspid
valve, you know [the score will go down], or if I burn
the superior vena cava, you know [the score will go
down]...you can learn more and more from time to
time. [P03; male]

I would take another ECG before prescribing too
much medication, and see if [the risk score] goes up
or down on the next ECG...For those in yellow...I will
adjust my [treatment plan] according to the risk level
of the next ECG. [P06; male]

P06 went further and emphasized that, while AI models are
valuable for providing quantitative assessments, their true worth
lies in delivering actionable insights that can guide clinical
decision-making. This sentiment reflects a broader interest
among cardiologists in understanding how AI models arrive at
their conclusions, particularly in relation to identifying
intervention points:

I wonder if you are highlighting these risk factors to
tell us these are the areas for intervention. I wonder
if there is a reason for this risk factor, such as if we
treat these factors, it could lower the risk. [P06; male]

In general, our findings indicate that cardiologists, particularly
self-actualizers, are not only open to integrating AI suggestions
into their decision-making processes but also eager to enhance
their knowledge through interaction with the AI model provided
that these suggestions are accompanied by clear rationales and
practical recommendations.

Implications of Creating a Software as a Medical
Device
In the development of AI algorithms for clinical applications,
it is crucial to not only meet the user interface requirements but
also ensure compliance with regulatory standards. Software as
a medical device must adhere to international standards such
as International Organization for Standardization (ISO) 13485
(medical device quality management systems), ISO 14971
(medical device risk management), and ISO 62304 (software
life cycle processes). In addition, compliance with Food and
Drug Administration approval and the European Medical Device
Regulation is essential from the perspectives of patient safety,
effectiveness, and legal requirements.

While the AF’fective study provides valuable foundational
knowledge on user interface, it is still considered in the early
stages of technology readiness level (1-3). However, with
advancements in AI technology, the insights from this research
could contribute to the revision of existing standards, such as
the International Electrotechnical Commission 62366-1:2015
(usability engineering for medical devices). Specifically, the
consideration of explainability in the AI result display methods
proposed in this research—such as visually clarifying the
rationale behind suggestions and intuitively conveying risk and
uncertainty in interface design—will play a crucial role in
helping health care professionals accurately understand
AI-generated proposals and integrate them into clinical
decision-making. Moreover, our study highlighted that health
care professionals do not need to fully comprehend the technical
background or mechanisms of AI. Instead, it is crucial to create
a state in which users can reasonably understand “why this result
was reached,” which is effective in building trust in AI. Such
efforts extend beyond display design and have the potential to
be incorporated into new standards that facilitate smooth
communication between AI and health care professionals.

Conclusions
This paper reports a 3-stage study involving 23 physicians to
co-design, assess, and pilot an explainable AI system for AF
postablation monitoring called AF’fective. Our co-design
approach effectively identified 4 feasible explainable strategies.
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Furthermore, while we actively used explainable AI to identify
the features contributing to the predictive results, our explainable
strategies enabled the design of a more holistic patient
monitoring system that incorporates contextual factors such as
patient history and established principles to support physicians’
decision-making rather than merely explaining the features
indicated by ECG graphs. In the third stage, the system
prompted cardiologists to envision its use in their routines,
leading to highly contextualized feedback. This study
highlighted the need to curate actionable explainable features
and set correct expectations for interpreting predictive scores.
In addition, cardiologists were interested in understanding the
AI’s reasoning and identifying strategies to address recurrence
risk factors.

Interestingly, although our focus was on AF recurrence
prevention, many insights appear generalizable to other disease
care contexts, such as temporal risk score monitoring and setting
realistic expectations for scoring, particularly as extreme scores
(0% and 100%) are practically unattainable. Further
investigation is needed to determine whether these insights can
be universally applied to enhance the feasibility of implementing
explainable AI in clinical settings.

A future study will build on these findings and further evaluate
the potential challenges and advantages when implementing
the AF’fective system in near-live or live clinical care routines.
We believe that AI possesses the potential to revolutionize
medical practices and we can only realize it through putting the
technology in actual use case scenarios.

Acknowledgments
This work was supported by a research grant from the Japanese Circulation Society (2021).

Conflicts of Interest
None declared.

References

1. von Eschenbach WJ. Transparency and the black box problem: why we do not trust AI. Philos Technol. Sep 01,
2021;34(4):1607-1622. [doi: 10.1007/S13347-021-00477-0]

2. Petch J, Di S, Nelson W. Opening the black box: the promise and limitations of explainable machine learning in cardiology.
Can J Cardiol. Feb 2022;38(2):204-213. [FREE Full text] [doi: 10.1016/j.cjca.2021.09.004] [Medline: 34534619]

3. Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng. 2019;12:168-193. [doi:
10.1109/RBME.2018.2885714] [Medline: 30530339]

4. Nakamura T, Sasano T. Artificial intelligence and cardiology: current status and perspective. J Cardiol. Mar
2022;79(3):326-333. [FREE Full text] [doi: 10.1016/j.jjcc.2021.11.017] [Medline: 34895982]

5. Nattel S. New ideas about atrial fibrillation 50 years on. Nature. Jan 10, 2002;415(6868):219-226. [doi: 10.1038/415219a]
[Medline: 11805846]

6. Lippi G, Sanchis-Gomar F, Cervellin G. Global epidemiology of atrial fibrillation: an increasing epidemic and public health
challenge. Int J Stroke. Feb 2021;16(2):217-221. [doi: 10.1177/1747493019897870] [Medline: 31955707]

7. Odutayo A, Wong CX, Hsiao AJ, Hopewell S, Altman DG, Emdin CA. Atrial fibrillation and risks of cardiovascular disease,
renal disease, and death: systematic review and meta-analysis. BMJ. Sep 06, 2016;354:i4482. [FREE Full text] [doi:
10.1136/bmj.i4482] [Medline: 27599725]

8. Lip GY, Tse HF. Management of atrial fibrillation. Lancet. Aug 18, 2007;370(9587):604-618. [doi:
10.1016/S0140-6736(07)61300-2] [Medline: 17707756]

9. Dretzke J, Chuchu N, Agarwal R, Herd C, Chua W, Fabritz L, et al. Predicting recurrent atrial fibrillation after catheter
ablation: a systematic review of prognostic models. Europace. May 01, 2020;22(5):748-760. [FREE Full text] [doi:
10.1093/europace/euaa041] [Medline: 32227238]

10. Shashikumar SP, Shah AJ, Li Q, Clifford GD, Nemati S. A deep learning approach to monitoring and detecting atrial
fibrillation using wearable technology. In: Proceedings of the 2017 IEEE EMBS International Conference on Biomedical
& Health Informatics. 2017. Presented at: BHI '17; February 16-19, 2017:141-144; Orlando, FL. URL: https://ieeexplore.
ieee.org/document/7897225 [doi: 10.1109/bhi.2017.7897225]

11. Andersen RS, Peimankar A, Puthusserypady S. A deep learning approach for real-time detection of atrial fibrillation. Expert
Syst Appl. Jan 2019;115:465-473. [doi: 10.1016/j.eswa.2018.08.011]

12. Zhou X, Nakamura K, Sahara N, Takagi T, Toyoda Y, Enomoto Y, et al. Deep learning-based recurrence prediction of
atrial fibrillation after catheter ablation. Circ J. Jan 25, 2022;86(2):299-308. [FREE Full text] [doi: 10.1253/circj.CJ-21-0622]
[Medline: 34629373]

13. Hung M, Lauren E, Hon E, Xu J, Ruiz-Negrón B, Rosales M, et al. Using machine learning to predict 30-day hospital
readmissions in patients with atrial fibrillation undergoing catheter ablation. J Pers Med. Aug 09, 2020;10(3):82. [FREE
Full text] [doi: 10.3390/jpm10030082] [Medline: 32784873]

14. Przewlocka-Kosmala M, Marwick TH, Dabrowski A, Kosmala W. Contribution of cardiovascular reserve to prognostic
categories of heart failure with preserved ejection fraction: a classification based on machine learning. J Am Soc Echocardiogr.
May 2019;32(5):604-15.e6. [doi: 10.1016/j.echo.2018.12.002] [Medline: 30718020]

JMIR Hum Factors 2025 | vol. 12 | e65923 | p. 13https://humanfactors.jmir.org/2025/1/e65923
(page number not for citation purposes)

She et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://dx.doi.org/10.1007/S13347-021-00477-0
https://linkinghub.elsevier.com/retrieve/pii/S0828-282X(21)00703-0
http://dx.doi.org/10.1016/j.cjca.2021.09.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34534619&dopt=Abstract
http://dx.doi.org/10.1109/RBME.2018.2885714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30530339&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0914-5087(21)00336-1
http://dx.doi.org/10.1016/j.jjcc.2021.11.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34895982&dopt=Abstract
http://dx.doi.org/10.1038/415219a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11805846&dopt=Abstract
http://dx.doi.org/10.1177/1747493019897870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31955707&dopt=Abstract
https://www.bmj.com/lookup/pmidlookup?view=long&pmid=27599725
http://dx.doi.org/10.1136/bmj.i4482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27599725&dopt=Abstract
http://dx.doi.org/10.1016/S0140-6736(07)61300-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17707756&dopt=Abstract
https://europepmc.org/abstract/MED/32227238
http://dx.doi.org/10.1093/europace/euaa041
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32227238&dopt=Abstract
https://ieeexplore.ieee.org/document/7897225
https://ieeexplore.ieee.org/document/7897225
http://dx.doi.org/10.1109/bhi.2017.7897225
http://dx.doi.org/10.1016/j.eswa.2018.08.011
https://dx.doi.org/10.1253/circj.CJ-21-0622
http://dx.doi.org/10.1253/circj.CJ-21-0622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34629373&dopt=Abstract
https://www.mdpi.com/resolver?pii=jpm10030082
https://www.mdpi.com/resolver?pii=jpm10030082
http://dx.doi.org/10.3390/jpm10030082
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32784873&dopt=Abstract
http://dx.doi.org/10.1016/j.echo.2018.12.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30718020&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


15. Mortazavi BJ, Downing NS, Bucholz EM, Dharmarajan K, Manhapra A, Li SX, et al. Analysis of machine learning
techniques for heart failure readmissions. Circ Cardiovasc Qual Outcomes. Nov 2016;9(6):629-640. [doi:
10.1161/circoutcomes.116.003039]

16. Isensee F, Jaeger PF, Full PM, Wolf I, Engelhardt S, Maier-Hein KH. Automatic cardiac disease assessment on cine-MRI
via time-series segmentation and domain specific features. In: Proceedings of the 8th International Workshop, STACOM
2017, Held in Conjunction with MICCAI 2017 on Statistical Atlases and Computational Models of the Heart, ACDC and
MMWHS Challenges. 2017. Presented at: STACOM '17; September 10-14, 2017:120-129; Montreal, QC. URL: https:/
/link.springer.com/chapter/10.1007/978-3-319-75541-0_13 [doi: 10.1007/978-3-319-75541-0_13]

17. Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and
management of arrhythmias. Eur Heart J. Oct 07, 2021;42(38):3904-3916. [FREE Full text] [doi: 10.1093/eurheartj/ehab544]
[Medline: 34392353]

18. Ebrahimi Z, Loni M, Daneshtalab M, Gharehbaghi A. A review on deep learning methods for ECG arrhythmia classification.
Expert Syst Appl. Sep 2020;7:100033. [doi: 10.1016/j.eswax.2020.100033]

19. Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher MJ, et al. Passive detection of atrial fibrillation using a
commercially available smartwatch. JAMA Cardiol. May 01, 2018;3(5):409-416. [FREE Full text] [doi:
10.1001/jamacardio.2018.0136] [Medline: 29562087]

20. Nazarian S, Lam K, Darzi A, Ashrafian H. Diagnostic accuracy of smartwatches for the detection of cardiac arrhythmia:
systematic review and meta-analysis. J Med Internet Res. Aug 27, 2021;23(8):e28974. [FREE Full text] [doi: 10.2196/28974]
[Medline: 34448706]

21. Sehrawat O, Kashou AH, Noseworthy PA. Artificial intelligence and atrial fibrillation. J Cardiovasc Electrophysiol. Aug
15, 2022;33(8):1932-1943. [FREE Full text] [doi: 10.1111/jce.15440] [Medline: 35258136]

22. Feeny AK, Chung MK, Madabhushi A, Attia ZI, Cikes M, Firouznia M, et al. Artificial intelligence and machine learning
in arrhythmias and cardiac electrophysiology. Circ Arrhythm Electrophysiol. Aug 2020;13(8):e007952. [FREE Full text]
[doi: 10.1161/CIRCEP.119.007952] [Medline: 32628863]

23. Kim JY, Kim Y, Oh GH, Kim SH, Choi Y, Hwang Y, et al. A deep learning model to predict recurrence of atrial fibrillation
after pulmonary vein isolation. Int J Arrhythm. Nov 16, 2020;21(1):95. [doi: 10.1186/S42444-020-00027-3]

24. Budzianowski J, Kaczmarek-Majer K, Rzeźniczak J, Słomczyński M, Wichrowski F, Hiczkiewicz D, et al. Machine learning
model for predicting late recurrence of atrial fibrillation after catheter ablation. Sci Rep. Sep 14, 2023;13(1):15213. [FREE
Full text] [doi: 10.1038/s41598-023-42542-y] [Medline: 37709859]

25. Li Z, Wheelock KM, Lathkar-Pradhan S, Oral H, Clauw DJ, Gunaratne P, et al. Predicting atrial fibrillation episodes with
rapid ventricular rates associated with low levels of activity. BMC Med Inform Decis Mak. Dec 28, 2021;21(1):364. [FREE
Full text] [doi: 10.1186/s12911-021-01723-3] [Medline: 34963444]

26. Nishimura T, Senoo K, Makino M, Munakata J, Tomura N, Shimoo S, et al. Prediction model for the new onset of atrial
fibrillation combining features of 24-hour Holter electrocardiogram with 12-lead electrocardiogram. Int J Cardiol Heart
Vasc. Aug 2023;47:101245. [FREE Full text] [doi: 10.1016/j.ijcha.2023.101245] [Medline: 37521520]

27. Hallowell N, Badger S, Sauerbrei A, Nellåker C, Kerasidou A. "I don't think people are ready to trust these algorithms at
face value": trust and the use of machine learning algorithms in the diagnosis of rare disease. BMC Med Ethics. Nov 16,
2022;23(1):112. [FREE Full text] [doi: 10.1186/s12910-022-00842-4] [Medline: 36384545]

28. K S, V S, EA G, KP S. Explainable artificial intelligence for heart rate variability in ECG signal. Healthc Technol Lett.
Dec 09, 2020;7(6):146-154. [doi: 10.1049/htl.2020.0033]

29. Jo YY, Cho Y, Lee SY, Kwon J, Kim KH, Jeon KH, et al. Explainable artificial intelligence to detect atrial fibrillation
using electrocardiogram. Int J Cardiol. Apr 01, 2021;328:104-110. [doi: 10.1016/j.ijcard.2020.11.053] [Medline: 33271204]

30. Ma Y, Zhang D, Xu J, Pang H, Hu M, Li J, et al. Explainable machine learning model reveals its decision-making process
in identifying patients with paroxysmal atrial fibrillation at high risk for recurrence after catheter ablation. BMC Cardiovasc
Disord. Feb 17, 2023;23(1):91. [FREE Full text] [doi: 10.1186/s12872-023-03087-0] [Medline: 36803424]

31. Anand A, Kadian T, Shetty MK, Gupta A. Explainable AI decision model for ECG data of cardiac disorders. Biomed Signal
Process Control. May 2022;75:103584. [doi: 10.1016/j.bspc.2022.103584]

32. Mousavi S, Afghah F, Acharya UR. HAN-ECG: an interpretable atrial fibrillation detection model using hierarchical
attention networks. Comput Biol Med. Dec 2020;127:104057. [FREE Full text] [doi: 10.1016/j.compbiomed.2020.104057]
[Medline: 33126126]

33. Mousavi S, Afghah F, Razi A, Acharya UR. ECGNET: learning where to attend for detection of atrial fibrillation with deep
visual attention. IEEE EMBS Int Conf Biomed Health Inform. May 2019;2019:854. [FREE Full text] [doi:
10.1109/BHI.2019.8834637] [Medline: 33083788]

34. Raza A, Tran KP, Koehl L, Li S. Designing ECG monitoring healthcare system with federated transfer learning and
explainable AI. Knowl Based Syst. Jan 2022;236:107763. [doi: 10.1016/j.knosys.2021.107763]

35. Wesołowski S, Lemmon G, Hernandez EJ, Henrie A, Miller TA, Weyhrauch D, et al. An explainable artificial intelligence
approach for predicting cardiovascular outcomes using electronic health records. PLOS Digit Health. Jan 18,
2022;1(1):e0000004. [FREE Full text] [doi: 10.1371/journal.pdig.0000004] [Medline: 35373216]

JMIR Hum Factors 2025 | vol. 12 | e65923 | p. 14https://humanfactors.jmir.org/2025/1/e65923
(page number not for citation purposes)

She et alJMIR HUMAN FACTORS

XSL•FO
RenderX

http://dx.doi.org/10.1161/circoutcomes.116.003039
https://link.springer.com/chapter/10.1007/978-3-319-75541-0_13
https://link.springer.com/chapter/10.1007/978-3-319-75541-0_13
http://dx.doi.org/10.1007/978-3-319-75541-0_13
https://europepmc.org/abstract/MED/34392353
http://dx.doi.org/10.1093/eurheartj/ehab544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34392353&dopt=Abstract
http://dx.doi.org/10.1016/j.eswax.2020.100033
https://europepmc.org/abstract/MED/29562087
http://dx.doi.org/10.1001/jamacardio.2018.0136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29562087&dopt=Abstract
https://www.jmir.org/2021/8/e28974/
http://dx.doi.org/10.2196/28974
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34448706&dopt=Abstract
https://europepmc.org/abstract/MED/35258136
http://dx.doi.org/10.1111/jce.15440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35258136&dopt=Abstract
https://europepmc.org/abstract/MED/32628863
http://dx.doi.org/10.1161/CIRCEP.119.007952
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32628863&dopt=Abstract
http://dx.doi.org/10.1186/S42444-020-00027-3
https://doi.org/10.1038/s41598-023-42542-y
https://doi.org/10.1038/s41598-023-42542-y
http://dx.doi.org/10.1038/s41598-023-42542-y
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37709859&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01723-3
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01723-3
http://dx.doi.org/10.1186/s12911-021-01723-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34963444&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S2352-9067(23)00076-3
http://dx.doi.org/10.1016/j.ijcha.2023.101245
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37521520&dopt=Abstract
https://bmcmedethics.biomedcentral.com/articles/10.1186/s12910-022-00842-4
http://dx.doi.org/10.1186/s12910-022-00842-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36384545&dopt=Abstract
http://dx.doi.org/10.1049/htl.2020.0033
http://dx.doi.org/10.1016/j.ijcard.2020.11.053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33271204&dopt=Abstract
https://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-023-03087-0
http://dx.doi.org/10.1186/s12872-023-03087-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36803424&dopt=Abstract
http://dx.doi.org/10.1016/j.bspc.2022.103584
https://europepmc.org/abstract/MED/33126126
http://dx.doi.org/10.1016/j.compbiomed.2020.104057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33126126&dopt=Abstract
https://europepmc.org/abstract/MED/33083788
http://dx.doi.org/10.1109/BHI.2019.8834637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33083788&dopt=Abstract
http://dx.doi.org/10.1016/j.knosys.2021.107763
https://europepmc.org/abstract/MED/35373216
http://dx.doi.org/10.1371/journal.pdig.0000004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35373216&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


36. Matthiesen S, Diederichsen SZ, Hansen MK, Villumsen C, Lassen MC, Jacobsen PK, et al. Clinician preimplementation
perspectives of a decision-support tool for the prediction of cardiac arrhythmia based on machine learning: near-live
feasibility and qualitative study. JMIR Hum Factors. Nov 26, 2021;8(4):e26964. [FREE Full text] [doi: 10.2196/26964]
[Medline: 34842528]

37. Gerlings J, Jensen MS, Shollo A. Explainable AI, but explainable to whom? An exploratory case study of xAI in healthcare.
In: Lim CP, Chen YW, Vidya A, Mahorkar C, Jain LC, editors. Handbook of Artificial Intelligence in Healthcare. Volume
2. Cham, Switzerland. Springer; 2022:169-198.

38. Payrovnaziri SN, Chen Z, Rengifo-Moreno P, Miller T, Bian J, Chen J, et al. Explainable artificial intelligence models
using real-world electronic health record data: a systematic scoping review. J Am Med Inform Assoc. Jul 01,
2020;27(7):1173-1185. [FREE Full text] [doi: 10.1093/jamia/ocaa053] [Medline: 32417928]

39. She WJ, Senoo K, Iwakoshi H, Kuwahara N, Siriaraya P. AF’fective design: supporting atrial fibrillation post-treatment
with explainable AI. In: Proceedings of the 27th International Conference on Intelligent User Interfaces. 2022. Presented
at: IUI '22; March 22-25, 2022:22-25; Helsinki, Finland. URL: https://dl.acm.org/doi/10.1145/3490100.3516455 [doi:
10.1145/3490100.3516455]

40. Xie Y, Chen M, Kao D, Gao G, Chen XA. CheXplain: enabling physicians to explore and understand data-driven, AI-enabled
medical imaging analysis. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 2020.
Presented at: CHI '20; April 25-30, 2020:1-13; Honolulu, HI. URL: https://dl.acm.org/doi/10.1145/3313831.3376807 [doi:
10.1145/3313831.3376807]

41. Alhadreti O, Mayhew P. Rethinking thinking aloud: a comparison of three think-aloud protocols. In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. 2018. Presented at: CHI '18; April 21-26, 2018:1-12;
Montreal, QC. URL: https://dl.acm.org/doi/10.1145/3173574.3173618 [doi: 10.1145/3173574.3173618]

42. Laugwitz B, Held T, Schrepp M. Construction and evaluation of a user experience questionnaire. In: Proceedings of the
4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer
Society. 2008. Presented at: USAB '08; November 20-21, 2008:63-76; Graz, Austria. URL: https://link.springer.com/chapter/
10.1007/978-3-540-89350-9_6 [doi: 10.1007/978-3-540-89350-9_6]

43. Schrepp M, Hinderks A, Thomaschewski J. Construction of a benchmark for the user experience questionnaire (UEQ). Int
J Interact Multimed Artif Intell. 2017;4(4):40. [doi: 10.9781/ijimai.2017.445]

44. Davis FD, Venkatesh V. A critical assessment of potential measurement biases in the technology acceptance model: three
experiments. Int J Hum Comput Stud. Jul 1996;45(1):19-45. [doi: 10.1006/ijhc.1996.0040]

45. Davis F, Bagozzi R, Warshaw P. User acceptance of computer technology: a comparison of two theoretical models. Manag
Sci. 1989;35(8):1003. [FREE Full text]

46. Terhorst Y, Philippi P, Sander LB, Schultchen D, Paganini S, Bardus M, et al. Validation of the Mobile Application Rating
Scale (MARS). PLoS One. Nov 2, 2020;15(11):e0241480. [FREE Full text] [doi: 10.1371/journal.pone.0241480] [Medline:
33137123]

47. Stoyanov SR, Hides L, Kavanagh DJ, Zelenko O, Tjondronegoro D, Mani M. Mobile app rating scale: a new tool for
assessing the quality of health mobile apps. JMIR Mhealth Uhealth. Mar 11, 2015;3(1):e27. [FREE Full text] [doi:
10.2196/mhealth.3422] [Medline: 25760773]

48. Yamamoto K, Ito M, Sakata M, Koizumi S, Hashisako M, Sato M, et al. Japanese version of the Mobile App Rating Scale
(MARS): development and validation. JMIR Mhealth Uhealth. Apr 14, 2022;10(4):e33725. [FREE Full text] [doi:
10.2196/33725] [Medline: 35197241]

49. Lundberg S, Lee SI. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems. 2017. Presented at: NIPS '17; December 4-9, 2017:4768-4777; Long Beach,
CA. URL: https://dl.acm.org/doi/10.5555/3295222.3295230

50. Clarke V, Braun V, Hayfield N. Thematic analysis. In: Smith JA, editor. Qualitative Psychology: A Practical Guide to
Research Methods. Thousand Oaks, CA. Sage Publications; 2015:23-51.

51. Lundberg S. Be careful when interpreting predictive models in search of causal insights. Medium. URL: https:/
/towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
[accessed 2024-04-29]

52. She WJ, Ang CS, Neimeyer RA, Burke LA, Zhang Y, Jatowt A, et al. Investigation of a web-based explainable AI screening
for prolonged grief disorder. IEEE Access. 2022;10:41164-41185. [doi: 10.1109/access.2022.3163311]

53. Taniguchi H, Takata T, Takechi M, Furukawa A, Iwasawa J, Kawamura A, et al. Explainable artificial intelligence model
for diagnosis of atrial fibrillation using Holter electrocardiogram waveforms. Int Heart J. 2021;62(3):534-539. [FREE Full
text] [doi: 10.1536/ihj.21-094] [Medline: 34053998]

Abbreviations
AF: atrial fibrillation
AI: artificial intelligence
aVR: augmented vector right

JMIR Hum Factors 2025 | vol. 12 | e65923 | p. 15https://humanfactors.jmir.org/2025/1/e65923
(page number not for citation purposes)

She et alJMIR HUMAN FACTORS

XSL•FO
RenderX

https://humanfactors.jmir.org/2021/4/e26964/
http://dx.doi.org/10.2196/26964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34842528&dopt=Abstract
https://europepmc.org/abstract/MED/32417928
http://dx.doi.org/10.1093/jamia/ocaa053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32417928&dopt=Abstract
https://dl.acm.org/doi/10.1145/3490100.3516455
http://dx.doi.org/10.1145/3490100.3516455
https://dl.acm.org/doi/10.1145/3313831.3376807
http://dx.doi.org/10.1145/3313831.3376807
https://dl.acm.org/doi/10.1145/3173574.3173618
http://dx.doi.org/10.1145/3173574.3173618
https://link.springer.com/chapter/10.1007/978-3-540-89350-9_6
https://link.springer.com/chapter/10.1007/978-3-540-89350-9_6
http://dx.doi.org/10.1007/978-3-540-89350-9_6
http://dx.doi.org/10.9781/ijimai.2017.445
http://dx.doi.org/10.1006/ijhc.1996.0040
https://www.jstor.org/stable/2632151
https://dx.plos.org/10.1371/journal.pone.0241480
http://dx.doi.org/10.1371/journal.pone.0241480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33137123&dopt=Abstract
https://mhealth.jmir.org/2015/1/e27/
http://dx.doi.org/10.2196/mhealth.3422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25760773&dopt=Abstract
https://mhealth.jmir.org/2022/4/e33725/
http://dx.doi.org/10.2196/33725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=35197241&dopt=Abstract
https://dl.acm.org/doi/10.5555/3295222.3295230
https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
https://towardsdatascience.com/be-careful-when-interpreting-predictive-models-in-search-of-causal-insights-e68626e664b6
http://dx.doi.org/10.1109/access.2022.3163311
https://dx.doi.org/10.1536/ihj.21-094
https://dx.doi.org/10.1536/ihj.21-094
http://dx.doi.org/10.1536/ihj.21-094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34053998&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


CNN: convolutional neural network
ECG: electrocardiography
Grad-CAM: Gradient-Weighted Class Activation Mapping
HCI: human-computer interaction
IRB: institutional review board
ISO: International Organization for Standardization
MARS: Mobile App Rating Scale
PWA: progressive web application
SHAP: Shapley Additive Explanations
TAM: technology acceptance model
UEQ: User Experience Questionnaire
UX: user experience
V1: first precordial lead
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